首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this research a novel and efficient procedure for the preparation of phosphonate derivatives using the reaction of 2,4-dihydroxyacetophenone, isopropenylacetylene, 2-amino-N-alkyl benzamide, dialkyl acetylenedicarboxylates and trimethyl phosphite or triphenyl phosphite in the presence of reusable 2D ZnO/Fe3O4 nanocomposites in water at room temperature was investigated. The 2D ZnO/Fe3O4 nanocomposites were synthesized using ionic liquid [OMIM]Br as a stabilizer and soft template. In addition, the power of antioxidant for some prepared compounds was studied using trapping of radicals by DPPH and a ferric reduction activity potential experiment. As a result, compound 6f displayed a noteworthy power for trapping of free radicals and 6b exhibited excellent reducing power compared with standards (BHT and TBHQ). Moreover, the antimicrobial power of some prepared quinazolinone phosphonates was proved by employing the disk diffusion experiment on two kinds of bacteria, Gram-positive and -negative bacteria. The obtained outcomes of disk diffusion test showed that these compounds prevented bacterial growth. Some advantages of this procedure are: short time of reaction, high yields of product and easy separation of catalyst and products.  相似文献   

2.
In this work, a new, green and beneficial nanomagnetic catalyst was easily fabricated using sulfuric acid as an acidic group on Fe3O4 nanoparticles coated with tris (hydroxymethyl) aminomethane (THAM). The synthesized catalyst was characterized by FT-IR, TGA/DTG, XRD, TEM, EDS, VSM, and SEM analyses. Next, its catalytic activity was studied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. This catalyst has advantages such as high catalytic activity, non-toxicity, easy separation from the reaction mixture using an external magnet and reuses for several times without significantly reducing in its catalytic activity.  相似文献   

3.
Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed.  相似文献   

4.
In this research, magnetic Fe3O4-NP nanoparticles were synthesized employing a green biosynthetic procedure by reduction of ferric chloride solution with clover leaf water extract. The nanoparticles prepared via this biosynthesis method can potentially be valuable for different purposes such as organic synthesis. In this research, 1,3-benzoxazole derivatives were generated via a multicomponent reaction of α-bromo ketones, isothiocyanate, and propiolate in the presence of a catalytic amount of bio-Fe3O4 MNPs and sodium hydride in water at 50°C in good yields. The catalyst was reused five times with a minor decrease in its catalytic activity.  相似文献   

5.
In this work, biosynthesized Fe3O4@Ni nanoparticles using Euphorbia maculata aqueous have been used as effective catalysts in the synthesis of 2,3-disubstituted benzo[b]furan derivatives using three component coupling of aldehydes, secondary amines and alkynes (A3 coupling reaction). Using novel nanoscale materials, the current green, practical and economical method leads to short reaction times and high yields. The biosynthesized catalyst was also successfully employed in the Sonogashira cross-coupling reactions of various aryl halides with phenylacetylene. The best performance was observed using just 20 mg of the catalyst and ethanol as a green solvent. The developed protocol provides easy workup, short reaction times and good to excellent product yields. Furthermore, since the composite is highly stable, an external permanent magnet can be easily used for separating the catalyst. Thus, the catalyst can be recycled several times without considerable loss of catalytic activity.  相似文献   

6.
以沉淀法制备了正癸酸修饰磁性纳米Fe3O4,采用XRD、TEM和FT-IR对修饰前后的磁性纳米粒子的形态、结构进行了表征。将修饰后的磁性纳米粒子用于对溶菌酶蛋白进行吸附分离,研究了溶液的pH、温度、时间、溶菌酶初始浓度、离子强度等因素对吸附过程的影响。结果表明:pH=10.7,吸附温度为25℃,吸附时间为2.0 h,溶菌酶初始浓度为0.30 mg·mL-1,最大吸附容量为35.0 mg·g-1。修饰后的磁性纳米粒子用于从鸡蛋清中提取溶菌酶,纯化倍数为30.9,酶活力收得率为73.0%。  相似文献   

7.
The colloid gold and magnetic particle modified with various chemical groups have been widely used in the areas of biomedical and molecular biology[1―6]. Therefore, a great deal of attention has been given to the preparation and application of colloid go…  相似文献   

8.
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature,regenerable,desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier gas to very low levels.As a sort of effective desufurizer,such as Fe2O3,ZnO and ZnFe2O4,it will endure strong reducing atmosphere in desulfurization process.The reduced degree of desufurizer can have an effect on its desulfurization reactivity.In this paper,Fe2O3,ZnO and ZnFe2O4 were synthesized by precipitation or co-precipitation at constant pH.After aging,washing and drying,the solids were calcined at 800℃.The reduction behaviors of sample were characterized by temperature-programmed reduction (TPR).It is found that there are two reduction peaks for Fe203 in TPR,and whereas no reduction peaks for ZnO are found.The reduction process of ZnFe2O4 prepared by co-precipitation is different from that of Fe2O3.ZnFe2O4 is easier to be reduced than Fe2O3.The activation energy of reduction process for Fe2O3 and ZnFe2O4 is obtained at different reduction periods.  相似文献   

9.
Polypyrrole (PPY)/Fe3O4/CNT has been synthesized and characterized by FT‐IR, TEM and SEM techniques and its catalytic activity has been evaluated in the synthesis of several series of pyran derivatives. Tetrahydrobenzo[b]pyranes, 4H‐pyran‐3‐carboxylates, 4H,5H‐pyrano[3,2‐c]chromenes and dihydropyrano[2,3‐c]pyrazoles have been successfully prepared from one‐pot three‐component condensation of aldehyde, malononitrile and active methylene‐containing compounds (dimedone /ethyl acetoacetate/4‐hydroxycoumarin/3‐methyl‐2‐pyrazoline‐5‐one) using PPY/Fe3O4/CNT as a new and reusable heterogeneous catalyst. The present method offer several advantages such as; high yields of products, short reaction times, easy work‐up procedure and easy separation of the catalyst from the reaction mixture due to its magnetic character. Furthermore, chemoselective synthesis of bis‐benzo[b]pyran from terephthalaldehyde can be achieved by this method.  相似文献   

10.
This paper reports the green and in situ preparation of Fe3O4@SiO2‐Ag magnetic nanocatalyst synthesized using safflower (Carthamus tinctorius L.) flower extract without the addition of any stabilizers or surfactants. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4‐nitrophenol (4‐NP), methylene blue (MB) and methyl orange (MO) in an environment‐friendly medium at room temperature. The main factors such as pH, temperature and amount of catalyst influencing the nanocatalyst performance were studied. The apparent rate constants for 4‐NP, MO and MB reduction were calculated, being 0.756 min?1, 0.064 s?1 and 0.09 s?1, respectively. The catalyst was recovered using an external magnet and reused several times with negligible loss of catalytic activity. The as‐synthesized nanoparticles were characterized using powder X‐ray diffraction, transmission electron microscopy, UV–visible, Fourier transform infrared and inductively coupled plasma atomic emission spectroscopies, dynamic light scattering and vibrating sample magnetometry.  相似文献   

11.
We describe the synthesis of a novel Fe3O4/amidoxime (AO)/Pd nanocatalyst by grafting of AO groups on Fe3O4 nanoparticles and subsequent deposition of Pd nanoparticles. Prior to grafting of AO, the 2‐cyanoethyl‐functionalized Fe3O4 nanoparticles prepared through combining 2‐cyanoethyltriethoxysilane and Fe3O4 were treated with hydroxylamine. The AO‐grafted Fe3O4 nanoparticles were then used as a platform for the deposition of Pd nanoparticles. The catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, wavelength‐ and energy‐dispersive X‐ray spectroscopies and inductively coupled plasma analysis. Fe3O4/AO/Pd is novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Fe3O4 nanoparticles were coated with aminopropyltriethoxysilane and subsequently reacted with isatin to obtain imine‐bonded Fe3O4 nanoparticles. The addition of ZrOCl2?8H2O or CuCl2 led to the formation of complexes of Zr(IV)/isatin@Fe3O4 or Cu (II)/isatin@Fe3O4 as new magnetically separable catalysts. The synthesized catalysts were characterized using various techniques. These catalysts are shown to be efficient for chemo‐selective oxidation of sulfides to sulfoxides using hydrogen peroxide as oxidative agent. This system has many advantages, such as excellent level of reusability of magnetic catalysts, high yields, simplicity of separation of catalysts using an external magnet, environmental benignity and ease of handling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Fe3O4@SiO2@propyltriethoxysilane@o‐phenylendiamine as an environmentally‐benign functionalized silica‐coated magnetic organometallic nanomaterial has been synthesized and characterized by Fourier transforms infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM) images and energy dispersive X‐ray (EDX) and vibrating sample magnetometer (VSM) analyses. Then, its catalytic activity was investigated for the one‐pot three‐component condensation reaction between dimedone, malononitrile and various substituted aromatic aldehydes to afford the corresponding 2‐amino‐4H‐chromene derivatives under mild reaction conditions. This nanocatalyst can be easily recovered from the reaction mixture by using a magnet and reused for at least five times without significant decrease in catalytic activity.  相似文献   

14.
基于溶剂热合成体系,制备了不同形貌的Fe3O4微球和纳米片催化剂,考察了水热合成条件对Fe3O4晶粒形貌的影响,并研究了Fe3O4纳米催化剂的费托合成(F-T)性能。结果表明,成核和晶体生长速率是控制Fe3O4晶体形貌的关键。与传统的沉淀铁催化剂相比,Fe3O4纳米催化剂更容易还原和向活性相转变,因此,具有更高的F-T反应活性、低碳烯烃选择性及C5+选择性;Fe3O4微球催化剂比纳米片催化剂更易维晶粒的稳定,具有更高的反应活性和稳定性。  相似文献   

15.
A novel magnetic composite catalyst has been prepared by immobilizing a chiral diamine on core/shell Fe3O4/ZnO. This new catalyst was characterized using X‐ray diffraction, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and vibrating sample magnetometry. The performance of the catalyst was investigated in the asymmetric Kinugasa reaction and confirmed to be efficient in the synthesis of β‐lactam derivatives under mild conditions.  相似文献   

16.
l ‐Proline has been successfully anchored on the surface of magnetic nanoparticles and characterized using powder X‐ray diffraction, scanning electron microscopy, vibrating sample magnetometry and Fourier transform infrared spectroscopy. These nanoparticles as a chiral catalyst have been employed to promote the direct asymmetric Mannich reaction. The corresponding products are obtained in high yields with high level of diastereoselectivity (up to 99:1 dr) in the presence of Fe3O4– l ‐proline. Also this heterogeneous catalyst can be recovered easily and reused many times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
An environmentally benign magnetic silica‐based nanocomposite (Fe3O4/SBA‐15) as a heterogeneous nanocatalyst was prepared and characterized using Fourier transform infrared and ultraviolet–visible diffuse reflectance spectroscopies, scanning electron microscopy, X‐ray diffraction, vibrating sample magnetometry and Brunauer–Emmett–Teller multilayer nitrogen adsorption. Its catalytic activity was investigated for the one‐pot multicomponent synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones starting from isatoic anhydride, ammonium acetate and various aldehydes under mild reaction conditions and easy work‐up procedure in refluxing ethanol with good yields. The nanocatalyst can be recovered easily and reused several times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

A simple and efficient protocol for one-pot three-component synthesis of structurally diverse dialkyl 2-amino-3-cyano-4H-chromen-4-ylphosphonates from the condensation of salicylaldehydes, malononitrile, and trialkyl phosphite using silver nanoparticles as catalyst in ethanol at reflux has been developed. Selected new compounds were evaluated for their antioxidant activity by free radical screening using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Among the compounds employed, 5a, 5?b, and 5?h showed promising DPPH radical scavenging activities compared to the experimental standards at low concentration (100?µg/mL) after 24?h incubation.  相似文献   

19.
A simple and efficient method for the synthesis of 9,9‐dimethyl‐9,10‐dihydro‐8H‐benzo‐[α]xanthen‐11(12)‐one derivatives (DDBXs) was developed by the condensation reaction of various substituted aryl al...  相似文献   

20.
A simple and efficient method for the synthesis of 9,9‐dimethyl‐9,10‐dihydro‐8H‐benzo‐[α]xanthen‐11(12)‐one derivatives (DDBXs) was developed by the condensation reaction of various substituted aryl aldehydes with 2‐naphthol and dimedone using Fe3O4 magnetic nanoparticles (MNPs) as a heterogeneous catalyst under solvent‐free conditions at 90–110 °C.The experimental procedure is very simple,the products are formed in high yields and the catalyst is easily separated by applying an external magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号