首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mild mono‐ and di‐hydrodehalogenative reductions of gem‐dibromocyclopropanes are described, providing an easy and green approach towards the synthesis of cyclopropanes. The methodology utilizes 0.5–5 mol % TMPhen‐nickel as the catalyst, which, when activated with a hydride source such as sodium borohydride, cleanly and selectively dehalogenates dibromocyclopropanes. Double reduction proceeds in a single operation at temperatures between 20–45 °C and at atmospheric pressure in an aqueous designer surfactant medium. At lower loading and either in the absence of ligand or in the presence of 2,2′‐bipyridine, this new technology can also be used to gain access to not only monobrominated cyclopropanes, interesting building blocks for further use in synthesis, but also mono‐ or di‐deuterated analogues. Taken together, this base‐metal‐catalyzed process provides access to cyclopropyl‐containing products and is achieved under environmentally responsible conditions.  相似文献   

2.
The catalytic asymmetric synthesis of highly functionalized cyclopropanes from α-substituted allyl sulfones and silanes is reported. The reaction, using α-aryl diazoacetates or diacceptor diazo reagents, catalyzed by a chiral rhodium complex (Rh2((S)-BTPCP)4), furnished the corresponding cyclopropanes in moderate to high yields (27–97 %), high diastereoselectivities (68 : 32 to 20 : 1 d.r.) and moderate to excellent ee (40–99 %). This methodology offers a privileged access to an underexplored class of enantioenriched cyclopropanes with a high level of functionality, an asset for further post-functionalization and their incorporation into more complex structure.  相似文献   

3.
(Carbo)nucleoside derivatives constitute an important class of pharmaceuticals, yet there are only few convergent methods to access new analogues. Here, we report the first synthesis of thymine‐, uracil‐, and 5‐fluorouracil‐substituted diester donor–acceptor cyclopropanes and their use in the indium‐ and tin‐catalyzed [3+2] annulations with aldehydes, ketones, and enol ethers. The obtained diester products could be easily decarboxylated and reduced to the corresponding alcohols. The method gives access to a broad range of new (carbo)nucleoside analogues in only four or five steps and will be highly useful for the synthesis of libraries of bioactive compounds.  相似文献   

4.
A novel, highly enantio‐ and diastereoselective synthesis of 1‐boryl‐2,3‐disubstituted cyclopropanes has been developed by means of the cyclopropanation of alkenylboronates with ethyl diazoacetate in the presence of catalytic amounts of a chiral copper(I) complex. The products can also be directly accessed from alkynes through an operationally simple, sequential hydroboration–cyclopropanation protocol. The resulting enantioenriched 1‐boryl‐2,3‐disubstituted cyclopropanes are versatile synthetic intermediates that undergo further transformations at the carbon–boron bond.  相似文献   

5.
Arynes and donor–acceptor (D–A) cyclopropanes are two classes of strained systems having the potential for numerous applications in organic synthesis. The last two decades have witnessed a renaissance of interest in the chemistry of these species primarily because of the mild and robust methods for their generation or activation. Commonly, arynes as easily polarizable systems result in 1,2‐disubstitution, whereas D‐A cyclopropanes as polarized systems lead to 1,3‐bisfunctionalization thereby showing striking similarities. Transformations with 1,2‐ and 1,3‐dipoles afford cyclic structures. With arynes, emerging four‐membered rings as intermediates might react further, whereas the analogous five‐membered rings obtained from D–A cyclopropanes are most often the final products. However, there are a few cases where these intermediates behave surprisingly differently. This Minireview highlights the parallels in reactivity between arynes and D–A cyclopropanes thereby shedding light on the neglected similarities of these two reactive species.  相似文献   

6.
Efficient methods for the convergent synthesis of (poly)cyclic scaffolds are urgently needed in synthetic and medicinal chemistry. Herein, we describe new annulation reactions of thioalkynes with phthalimide‐substituted donor–acceptor cyclopropanes, which gave access to highly substituted cyclopentenes and polycyclic ring systems. With silyl‐thioalkynes, the Lewis acid catalyzed [3+2] annulation reaction with donor–acceptor cyclopropanes took place to afford 1‐thio‐cyclopenten‐3‐amines. On the other hand, an unprecedented polycyclic compound was formed with alkyl‐thioalkynes through a reaction pathway directly involving the phthalimide group. The two transformations proceeded in good yields and tolerated a large variety of functional groups.  相似文献   

7.
Herein, we report the enantio‐ and diastereoselective formation of trans‐iodo‐ and trans‐chlorocyclopropanes from α‐iodo‐ and α‐chlorozinc carbenoids by using a dioxaborolane‐derived chiral ligand. The synthetically useful iodocyclopropane building blocks were derivatized by an electrophilic trapping of the corresponding cyclopropyl lithium species or a Negishi coupling to give access to a variety of enantioenriched 1,2,3‐substituted cyclopropanes. The synthetic utility of this method was demonstrated by the formal synthesis of an HIV‐1 protease inhibitor. In addition, the related stereoselective bromocyclopropanation was also investigated. New insights about the relative electrophilicity of haloiodomethylzinc carbenoids are also presented.  相似文献   

8.
Donor‐acceptor cyclopropanes not only participate in a broad range of ring openings with nucleophiles, electrophiles, radical and red‐ox agents, but also are excellent substrates for various (3+n)‐cycloaddition and (3+n)‐annulation processes. Moreover, under treatment with Lewis acid donor‐acceptor cyclopropanes can produce new ring systems via isomerization or cyclodimerization. Authors’ contribution to the synthesis of diverse carbocycles from donor‐acceptor cyclopropanes is summarized in this account.  相似文献   

9.
The first catalytic asymmetric synthesis of highly functionalized difluoromethylated cyclopropanes is described. The method, based on a rhodium‐catalyzed cyclopropanation of difluoromethylated olefins, gives access to a broad range of cyclopropanes bearing ester, ketone, or nitro functional groups. By using Rh2((S )‐BTPCP)4 as a catalyst, the corresponding products were obtained in high yields and high diastereo‐ and enantioselectivities (up 20:1 d.r. and 99 % ee ). This methodology allowed preparation of enantioenriched difluoromethylcyclopropanes for the first time.  相似文献   

10.
Wurz RP  Charette AB 《Organic letters》2005,7(12):2313-2316
[reaction: see text] 1-Nitro- and 1-cyano-cyclopropyl ketones have been prepared in an expedient manner from cyclopropanation reactions of alkenes by diazo compounds or in situ-generated phenyliodonium ylides catalyzed by Rh(II) carboxylates. The doubly activated cyclopropanes were used as synthetic precursors for the regiospecific synthesis of 4-nitro- and 4-cyano-dihydropyrroles upon treatment with primary amines. Oxidation of the dihydropyrroles with DDQ allows rapid access to densely functionalized pyrroles.  相似文献   

11.
A facile and highly chemoselective synthesis of doubly activated cyclopropanes is reported where mixtures of alkenes and β‐dicarbonyl‐derived iodonium ylides are irradiated with light from blue LEDs. This metal‐free synthesis gives cyclopropanes in yields up to 96 %, is operative with cyclic and acyclic ylides, and proceeds with a variety of electronically‐diverse alkenes. Computational analysis explains the high selectivity observed, which derives from exclusive HOMO to LUMO excitation, instead of free carbene generation. The procedure is operationally simple, uses no photocatalyst, and provides access in one step to important building blocks for complex molecule synthesis.  相似文献   

12.
While vinyl cyclopropanes are valuable functional groups in drugs or natural products as well as established precursors to trigger a rich variety of synthetic transformations, their reactive nature can make their installation via direct catalytic approaches challenging. We herein present a modular access to (di)vinyl cyclopropanes under very mild conditions and full conservation of stereochemistry, allowing access to the cis or trans cyclopropane- as well as E or Z vinyl-stereochemical relationships. Our protocol relies on air-stable dinuclear PdI catalysis, which enables rapid (<30 min) and selective access to a diverse range of vinyl cyclopropane motifs at room temperature, even on gram scale.  相似文献   

13.
The herein reported visible‐light‐activated catalytic asymmetric [3+2] photocycloadditions between cyclopropanes and alkenes or alkynes provide access to chiral cyclopentanes and cyclopentenes, respectively, in 63–99 % yields and with excellent enantioselectivities of up to >99 % ee. The reactions are catalyzed by a single bis‐cyclometalated chiral‐at‐metal rhodium complex (2–8 mol %) which after coordination to the cyclopropane generates the visible‐light‐absorbing complex, lowers the reduction potential of the cyclopropane, and provides the asymmetric induction and overall stereocontrol. Enabled by a mild single‐electron‐transfer reduction of directly photoexcited catalyst/substrate complexes, the presented transformations expand the scope of catalytic asymmetric photocycloadditions to simple mono‐acceptor‐substituted cyclopropanes affording previously inaccessible chiral cyclopentane and cyclopentene derivatives.  相似文献   

14.
Aryl- and alkenyl substituted oxiranes, when submitted to treatment with superbasic reagents, undergo a highly regio- and stereoselective rearrangement leading to cyclopropylmethanol derivatives. The process can also be applied to mono- and dihydroxy substituted substrates thus leading to polyhydroxylated cyclopropanes.  相似文献   

15.
A general method for ring opening of various donor–acceptor cyclopropanes with the azide ion through an SN2‐like reaction has been developed. This highly regioselective and stereospecific process proceeds through nucleophilic attack on the more‐substituted C2 atom of a cyclopropane with complete inversion of configuration at this center. Results of DFT calculations support the SN2 mechanism and demonstrate good qualitative correlation between the relative experimental reactivity of cyclopropanes and the calculated energy barriers. The reaction provides a straightforward approach to a variety of polyfunctional azides in up to 91 % yield. The high synthetic utility of these azides and the possibilities of their involvement in diversity‐oriented synthesis were demonstrated by the developed multipath strategy of their transformations into five‐, six‐, and seven‐membered N‐heterocycles, as well as complex annulated compounds, including natural products and medicines such as (?)‐nicotine and atorvastatin.  相似文献   

16.
A novel synthesis of cyclopropanes has been developed via palladium-catalyzed C-H activation in which two new carbon-carbon bonds are formed in a single step. This method involves palladium-catalyzed activation of normally unreactive secondary alkyl C-H bonds and provides an efficient way to access cyclopropapyrrolo[1,2-a]indoles, analogues of mitomycin and cyclopropamitosenes.  相似文献   

17.
A synthetic method for the direct transformation of allylic ether into mono-, di- and trisubstituted cyclopropanes is presented.  相似文献   

18.
The effective use of ring strain has been applied to considerable advantage for the construction of complex systems. The focus here is directed towards cyclopropanes as building blocks for organic synthesis. Although thermodynamics should take the side of synthetic chemists, only a specific substitution pattern at the cyclopropane ring allows for particularly mild, efficient, and selective transformations. The required decrease in the activation barrier is achieved by the combined effects of vicinal electron‐donating and electron‐accepting moieties. This Review highlights the appropriate tools for successfully employing donor–acceptor cyclopropanes in ring‐opening reactions, cycloadditions, and rearrangements.  相似文献   

19.
Engineered hemoproteins have recently emerged as promising systems for promoting asymmetric cyclopropanations, but variants featuring predictable, complementary stereoselectivity in these reactions have remained elusive. In this study, a rationally driven strategy was implemented and applied to engineer myoglobin variants capable of providing access to 1‐carboxy‐2‐aryl‐cyclopropanes with high trans‐(1R,2R) selectivity and catalytic activity. The stereoselectivity of these cyclopropanation biocatalysts complements that of trans‐(1S,2S)‐selective variants developed here and previously. In combination with whole‐cell biotransformations, these stereocomplementary biocatalysts enabled the multigram synthesis of the chiral cyclopropane core of four drugs (Tranylcypromine, Tasimelteon, Ticagrelor, and a TRPV1 inhibitor) in high yield and with excellent diastereo‐ and enantioselectivity (98–99.9% de; 96–99.9% ee). These biocatalytic strategies outperform currently available methods to produce these drugs.  相似文献   

20.
王丽佳  唐勇 《应用化学》2018,35(9):1037-1056
含有推-拉电子(DA)体系的张力环化合物,例如DA环丙烷,是非常有用的合成砌块,被应用于天然产物全合成以及合成具有生物活性的分子的研究中。 近年来,本课题组利用手性铜、镍等配合物为催化剂,一方面发展了一系列高效合成手性DA环丙烷的新方法;另一方面陆续实现了仲胺、醇、硝酮、氮杂亚胺叶立德、烯醇硅醚、吲哚等多种亲核试剂与DA环丙烷的高对映选择性开环/环化反应。 本文结合我们课题组工作综述了DA环丙烷化合物的不对称合成、开环/环化反应以及动力学拆分方面的主要研究进展并进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号