首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The selective hydrolysis of proteins by non‐enzymatic catalysis is difficult to achieve, yet it is crucial for applications in biotechnology and proteomics. Herein, we report that discrete hafnium metal‐oxo cluster [Hf18O10(OH)26(SO4)13?(H2O)33] ( Hf18 ), which is centred by the same hexamer motif found in many MOFs, acts as a heterogeneous catalyst for the efficient hydrolysis of horse heart myoglobin (HHM) in low buffer concentrations. Among 154 amino acids present in the sequence of HHM, strictly selective cleavage at only 6 solvent accessible aspartate residues was observed. Mechanistic experiments suggest that the hydrolytic activity is likely derived from the actuation of HfIV Lewis acidic sites and the Brønsted acidic surface of Hf18 . X‐ray scattering and ESI‐MS revealed that Hf18 is completely insoluble in these conditions, confirming the HHM hydrolysis is caused by a heterogeneous reaction of the solid Hf18 cluster, and not from smaller, soluble Hf species that could leach into solution.  相似文献   

2.
Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of “molecular” and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi3+ drives the formation of aqueous Fe3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe3BiO2(CCl3COO)8(THF)(H2O)2, and demonstrated its conversion into an iron Keggin ion capped by six Bi3+ irons ( Bi6Fe13 ). The reaction pathway was documented by X‐ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi3+, which drives hydrolysis and condensation. Likewise, Bi3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage.  相似文献   

3.
Multimeric oxo‐hydroxo Al clusters function as models for common mineral structures and reactions. Cluster research, however, is often slowed by a lack of methods to prepare clusters in pure form and in large amounts. Herein, we report a facile synthesis of the little known cluster Al8(OH)14(H2O)18(SO4)5 ( Al8 ) through a simple dissolution method. We confirm its structure by single‐crystal X‐ray diffraction and show by 27Al NMR spectroscopy, electrospray‐ionization mass spectrometry, and small‐ and wide‐angle X‐ray scattering that it also exists in solution. We speculate that Al8 may form in natural water systems through the dissolution of aluminum‐containing minerals in acidic sulfate solutions, such as those that could result from acid rain or mine drainage. Additionally, the dissolution method produces a discrete Al cluster on a scale suitable for studies and applications in materials science.  相似文献   

4.
The ‘formal’ hydrolysis ratio (h = C(OH)added/C(Al)total) of hydrolysed aluminium-ions is an important parameter required for the exhaustive and quantitative speciation-fractionation of aluminium in aqueous solutions. This paper describes a potentiometric method for determination of the formal hydrolysis ratio based on an automated alkaline titration procedure. The method uses the point of precipitation of aluminium hydroxide as a reference (h = 3.0) in order to calculate the initial formal hydrolysis ratio of hydrolysed aluminium-ion solutions. Several solutions of pure hydrolytic species including aluminium monomers (AlCl3), Al13 polynuclear cluster ([Al13O4(OH)24(H2O)12]7+), Al30 polynuclear cluster ([Al30O8(OH)56(H2O)26]18+) and a suspension of nanoparticulate aluminium hydroxide have been used as ‘reference standards’ to validate the proposed potentiometric method. Other important variables in the potentiometric determination of the hydrolysis ratio have also been optimised including the concentration of aluminium and the type and strength of alkali (Trizma-base, NH3, NaHCO3, Na2CO3 and KOH). The results of the potentiometric analysis have been cross-verified by quantitative 27Al solution nuclear magnetic resonance (27Al NMR) measurements. The ‘formal’ hydrolysis ratio of a commercial basic aluminium chloride has been measured as an example of a practical application of the developed technique.  相似文献   

5.
The alkaline hydrolysis of dimethyl terephthalate (DMT) in the presence of [LiAl2(OH)6]Cl has been investigated to demonstrate a possible application of anion exchange facility of layered double hydroxides (LDHs) to control chemical reactions. The results show that (i) in the alkaline hydrolysis of DMT in the presence of [LiAl2(OH)6]Cl, most of the interlayer Cl of [LiAl2(OH)6]Cl is quickly replaced by OH in the alkaline solution because the LDH host favors OH more; (ii) the alkaline hydrolysis of DMT in the presence of [LiAl2(OH)6]Cl is faster than the reaction of DMT and [LiAl2(OH)6]OH; (iii) The hydrolysis of DMT in a buffer solution of pH≈8 takes longer time to reach equilibrium than the alkaline hydrolysis of DMT in the presence of [LiAl2(OH)6]Cl. It is believed that the selective anion exchange chemistry of the LDH plays a key role in storage and controlled release of active reactant, that is, OH, thus make the hydrolysis proceeds in a controlled way.  相似文献   

6.
The hydrolysis of hydro(pyrrolyl-l)borates ([BHn(NC4H4)4-n], n = 1,2,3) can be treated as a kinetically one-step reaction outside of the mildly acidic region. In strongly acidic medium the hydrolysis takes place in a stepwise manner; the intermediates (boranes and the cationic boron compounds) being hydrolyzed more slowly than the borate anion. In the first step of the hydrolysis of [BH3(NC4H4)] the B---H bond, while in case of [BH2(NC4H4)2] and [BH(NC4H4)3] the B---N bond is breaking.In neutral and mildly alkaline medium, the hydrolysis is a general acid catalyzed reaction (A---SE2 mechanism). It becomes to a special H+-ion catalyzed reaction (A-1 mechanism) in strongly alkaline region since the protonated intermediate can be reversed to the original borate upon reaction with the OH ion. The hydrolysis presumably takes place through an intermediate which is protonated on the pyrrolyl nitrogen. Concomitant to the hydrolysis an isotopic exchange reaction was observed on the Cα and Cβ atoms of the pyrrolyl group in heavy water. In the hydrolysis of the [BH3(NC4H4)]-anion the N-protonated intermediate is assumed to be able to reverse to the original borate even in acidic or neutral region, at least in part.  相似文献   

7.
A giant Pd cluster, Pd561phen60(OAc)180, has high catalytic activity for the selective oxidations of various primary allylic alcohols to the corresponding α,β-unsaturated aldehydes in the presence of molecular oxygen under mild reaction conditions. A Pd cluster anchored on TiO2 also catalyzes the above oxidations; the heterogeneous Pd561 cluster catalyst is easily separated from the reaction mixture and is reusable.  相似文献   

8.
《Polyhedron》1988,7(18):1759-1765
The molecular structure of [Os6(CO)18PCl] is presented. The phosphorus atom is interstitially sited within a distorted trigonal prismatic array of osmium atoms. The chlorine atom bridges one edge of a triangular face of the Os6cage. A comparison is made between the structures Of [Os6(CO)18PCl] and its parent compound, [OS6(CO)18P]. By using the model compounds [Ru6(CO)18P] and Ru6(CO)18PCl, the Fenske-Hall quantum chemical technique is used to investigate the mode of bonding of the phosphorus atom in [Os6(CO)18P]. In Ru6(CO)18PCl, the interaction of the tangential orbital of the chlorine atom with the ruthenium-ruthenium antibonding LUMO of [Ru6(CO)18P] is the primary interfragment interaction; this results in Ru6(CO)18PCl, and by analogy [Os6(CO)18PCl], being a 92 electron cluster in contrast to [Os6(CO)18P] which is a 90 electron cluster.  相似文献   

9.
A new triazole-functionalized tetracarboxylic acid ligand (H4L) has been synthesized and utilized for the fabrication of a 3D ZnII organic framework with a Zn4(−COO)6 cluster as the secondary building unit. The framework exhibits very good thermal stability and consists of dual functionalities of exposed Lewis acidic metal sites and accessible nitrogen-donor Lewis basic sites. The Lewis basic nitrogen sites in the framework serve as CO2 binding sites for highly selective CO2 capture and the presence of exposed Lewis acidic metal sites in the framework make it an efficient heterogeneous catalyst for the chemical fixation of CO2 into value-added cyclic carbonates under ambient conditions.  相似文献   

10.
The enthalpies of formation of 1.6-methano-[10] annulene (IV) (ΔHf298 (IV, g) = 75.2 ± 0.6 kcal mol?1), 1.6-imino-[10] annulene (V) (ΔHf298(V, g) = 87.8 ± 0.7 kcal mol?1) and of 1.6-oxido-[10] annulene (VI) (ΔHf298(VI, g) = 47.8 ± 1.2 kcal mol?1) have been determined by combustion calorimetry. The difficulties connected with an attempt to derive meaningfull «resonance energies» are discussed.  相似文献   

11.
The solubility of HfO2(am) was determined at different equilibration periods from the over- and undersaturation directions, in very acidic to basic solutions (0.1 m HCl to 3.2 m NaOH), and in NaCl solutions ranging in concentrations from very dilute to as high as 5.59 m and in a ${\text{p}}C_{{\text{H}} + }$ range from 1 to 4 to obtain reliable thermodynamic data for the Hf4+–Cl?–Na+–H+–OH?–H2O system. The studies indicate that equilibrium is reached rapidly (<5 days) and that HfO2(am) solubility shows amphoteric behavior. The solubility data obtained in this study, along with the data reported in the literature, at NaOH molalities as high as 21.7 m were interpreted using the ion-interaction model of Pitzer. The log K 0 for the solubility of HfO2(am) [HfO2(am) + 2H2O ? Hf4+ + 4OH?] was determined to be ?55.1 ± 0.7. The log K 0 values for the formation of HfOH3+, Hf(OH)0 4, Hf(OH)5 ?, and Hf(OH)6 2? according to the reaction (Hf4+ + xOH? ? Hf(OH)4?x x) were determined to be 13.8, <44.8, 49.7 ± 0.2, and 51.2 ± 0.2, respectively. The thermodynamic model developed in this study is valid for a wide range of conditions (as high as 0.1 m HCl, 21.7 m NaOH, and 5.59 m NaCl). The binary ion-interaction parameters for Hf4+–Cl?, HfOH3+–Cl?, and Hf(OH)2? 6–Na+ were determined in this study to accurately define the observed solubility behavior of hafnium in various systems.  相似文献   

12.
Two homoleptic alkynyl‐protected gold clusters with compositions of Na[Au25(C≡CAr)18] and (Ph4P)[Au25(C≡CAr)18] (Na? 1 and Ph4P? 1 , Ar=3,5‐bis(trifluoromethyl)phenyl) were synthesized via a direct reduction method. 1 is a magic cluster analogous to [Au25(SR)18]? in terms of electron counts and metal‐to‐ligand ratio. Single‐crystal structure analysis reveals that 1 has an identical Au13 kernel to [Au25(SR)18]?, but adopts a distinctly different arrangement of the six peripheral dimer staple motifs. The steric hindrance of alkynyl ligands is responsible for the D3 arrangement of Au25. The introduction of alkynyl also significantly changes the optical absorption features of the nanocluster as supported by DFT calculations. This magic cluster confirms that there is a similar but quite different parallel alkynyl‐protected metal cluster universe in comparison to the thiolated one.  相似文献   

13.
Fluorophosphatometallates with the composition K3H3Zr3F3(PO4)5, Rb3H3Zr3F3(PO4)5, Rb3H3Hf3F3(PO4)5, CsH2Hf2F2(PO4)3?2H2O are studied by 31P, 19F, and 1H NMR. It is found that protons enter in the composition of hydrophosphate groups and fluorine atoms occupy the terminal sites in the tetravalent metal environment. Schemes of the crystal structure of fluorophosphatometallates are proposed. It is established that in CsH2Hf2F2(PO4)3?2H2O water molecules are bonded to the phosphate group proton via a strong hydrogen bond and are characterized by a low energy barrier of molecular motions.  相似文献   

14.
Hf2Ni2In, Hf2Ni2Sn, Hf2Cu2In, and Hf2Pd2In were synthesized by reacting the elements in an arc-melting furnace under argon and subsequent annealing at 970 K. They crystallize with an ordered Zr3Al2 type structure, space group P42/mnm which was refined from single crystal X-ray data for Hf2Ni2In (a = 713.9(1) pm, c = 660.4(2) pm, wR2 = 0.0665, 513 F2 values) and Hf2Ni2Sn (a = 703.1(1) pm, c = 676.1(2) pm, wR2 = 0.0423, 507 F2 values) with 18 parameters for each refinement. The lattice constants for Hf2Cu2In and Hf2Pd2In are a = 715.5(1) pm, c = 677.0(1) pm and a = 742.6(1) pm, c = 679.4(2) pm, respectively. The structures may be considered as an intergrowth of distorted CsCl- and AlB2-like slabs. Magnetic susceptibility measurements indicate Pauli paramagnetism for Hf2Ni2In and Hf2Ni2Sn, which is consistent with the metallic conductivity observed for Hf2Ni2In. 119Sn Mössbauer spectroscopy of Hf2Ni2Sn shows one signal with an isomer shift of δ = 1.59(1) mm/s subjected to quadrupole splitting of δEq = 0.81(1) mm/s.  相似文献   

15.
Atranes     
The kinetics of the hydrolysis of 1-(-chloroalkyl)silatranes (where R=ClCH2 Cl2CH, and CH3ClCH, and n=1–3) at 25°C in neutral and acidic aqueous and aqueous alcoholic media with H2O,2H2O, and H2 18O were studied. The rate of hydrolysis in acidic media is considerably higher than in neutral media. The introduction of methyl groups in the 3, 7, and 10 position of the atrane ring and an increase in the electronegativity of the substituent attached to the silicon atom lower the rate of hydrolysis. According to the mass spectrometric data, the triethanolamine formed during hydrolysis in H2 18O does not contain18O, which indicates hydrolytic cleavage of the Si-O bond rather than the O-C bond.See [1] for communication LXVII.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1344–1346, October, 1976.  相似文献   

16.
On the Crystal Chemistry of Oxometallates of Hafnium The contribution shows Hf4+ in oxides and oxometallates with typical and untypical coordination by oxygen. First of all the HfO6‐octahedra exist besides the Oxides of Hafnium in different Hf‐molybdates and ‐vanadates. A special feature is the formation of complex surroundings of to each other isolated HfO6‐octahedra, forming [HfO3(Mo6O21)]8−‐, [HfO3(Mo12O39)]8−‐ and [HfO3(Rb2O15)]30−‐groups. HfO6‐octahedra are incorporated in polyhedra chains too. Interesting points of view of the crystal chemistry of Hf‐oxometallates are Hf/O‐polyhedra showing coordination numbers C.N. > 6. For example two times capped trigonal prisms (hp/ht‐HfMo2O8) and three times capped trigonal prisms ht/hp‐HfO2 (Cottunnit‐Type) are representative polyhedra with C.N. = 8 and C.N. = 9. In the fluorite related compounds (Ca2Hf7O16) Hf4+ is situated inside a damaged cube (one corner is missing). At least hexagonal HfO12‐antiprisms (C.N. = 12) had been found in one of the trigonal form of HfMo2O8. In the same crystal structure it shows (C.N. = 6) trigonal HfO6‐Prismens. Hf4+ has in addition no problems to accept statistical distributions with other elements. It adapts crystal structures of pyrochlores and perowskites of different distortion. Finally one compound, nearly free of oxygen (Hf9Mo4NiO0,84) is reported, it shows interesting metal clusters.  相似文献   

17.
Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI ‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min?1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.  相似文献   

18.
An organicinorganic hybrid polyoxovanadoborate K6(CH3NH3)4[V12B18O54(OH)6-(H2O)]·2en·12H2O (1, en = ethylenediamine) has been synthesized under hydrothermal conditions and characterized by IR spectroscopy, element analyses, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. Single-crystal structure analysis reveals that 1 consists of a cage-like polyoxovanadium borate [V12B18O54(OH)6(H2O)]10? cluster that is constructed from a puckered {B18O36(OH)6} ring sandwiched by two triangle {V6O18} units, in which a water molecule is confined in the middle of the cage-like cluster. Interestingly, 1 represents the rare example of extended 3-D framework constructed from [V12B18O54(OH)6-(H2O)]10? clusters through K+ cations.  相似文献   

19.
A new class of hexameric Ln12‐containing 60‐tungstogermanates, [Na(H2O)6?Eu12(OH)12(H2O)18Ge2(GeW10O38)6]39? ( Eu12 ), [Na(H2O)6?Gd12(OH)6(H2O)24Ge(GeW10O38)6]37? ( Gd12 ), and [(H2O)6?Dy12(H2O)24(GeW10O38)6]36? ( Dy12 ), comprising six di‐Ln‐embedded {β(4,11)‐GeW10} subunits was prepared by reaction of [α‐GeW9O34]10? with LnIII ions in weakly acidic (pH 5) aqueous medium. Depending on the size of the LnIII ion, the assemblies feature selective capture of two (for Eu12 ), one (for Gd12 ), or zero (for Dy12 ) extra GeIV ions. The selective encapsulation of a cationic sodium hexaaqua complex [Na(H2O)6]+ was observed for Eu12 and Gd12 , whereas Dy12 incorporates a neutral, distorted‐octahedral (H2O)6 cluster. The three compounds were characterized by single‐crystal XRD, ESI‐MS, photoluminescence, and magnetic studies. Dy12 was shown to be a single‐molecule magnet.  相似文献   

20.
Ligand-induced surface restructuring with heteroatomic doping is used to precisely modify the surface of a prototypical [Au25(SR1)18] cluster ( 1 ) while maintaining its icosahedral Au13 core for the synthesis of a new bimetallic [Au19Cd3(SR2)18] cluster ( 2 ). Single-crystal X-ray diffraction studies reveal that six bidentate Au2(SR1)3 motifs (L2) attached to the Au13 core of 1 were replaced by three quadridentate Au2Cd(SR2)6 motifs (L4) to create a bimetallic cluster 2 . Experimental and theoretical results demonstrate a stronger electronic interaction between the surface motifs (Au2Cd(SR2)6) and the Au13 core, attributed to a more compact cluster structure and a larger energy gap of 2 compared to that of 1 . These factors dramatically enhance the photoluminescence quantum efficiency and lifetime of crystal of the cluster 2 . This work provides a new route for the design of a wide range of bimetallic/alloy metal nanoclusters with superior optoelectronic properties and functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号