首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The development of DNA‐targeted photodynamic therapy (PDT) agents for cancer treatment has drawn substantial attention. Herein, the design and synthesis of dinuclear IrIII‐containing luminescent metallohelices with tunable PDT efficacy that target mitochondrial DNA in cancer cells are reported. The metallohelices are fabricated using dynamic imine‐coupling chemistry between aldehyde end‐capped fac‐Ir(ppy)3 handles and linear alkanediamine spacers, followed by reduction of the imine linkages. The length and odd–even character of the diamine alkyl linker determined the stereochemistry (helicates vs. mesocates). Compared to the helicates, the mesocates exhibit improved apoptosis‐induction upon white‐light irradiation. Molecular docking studies indicate that the mesocate with a proper length of diamine spacers shows stronger affinity for the minor groove of DNA. This study highlights the potential of DNA‐targeting IrIII‐containing metallohelices as PDT agents.  相似文献   

2.
Transition metals offer many possibilities in developing potent chemotherapeutic agents. They are endowed with a variety of oxidation states, allowing for the selection of their coordination numbers and geometries via the choice of proper ligands, leading to the tuning of their final biological properties. We report here on the synthesis, physico-chemical characterization, and solution behavior of two gold(III) pyrrolidinedithiocarbamates (PDT), namely [AuIIIBr2(PDT)] and [AuIIICl2(PDT)]. We found that the bromide derivative was more effective than the chloride one in inducing cell death for several cancer cell lines. [AuIIIBr2(PDT)] elicited oxidative stress with effects on the permeability transition pore, a mitochondrial channel whose opening leads to cell death. More efficient antineoplastic strategies are required for the widespread burden that is cancer. In line with this, our results indicate that [AuIIIBr2(PDT)] is a promising antineoplastic agent that targets cellular components with crucial functions for the survival of tumor cells.  相似文献   

3.
Bipyrimidines have been chosen as (N∧N)(N∧N) bridging ligands for connecting metal centers. IrIII-LnIII (Ln = Nd, Yb, Er) bimetallic complexes [Ir(dfppy)2(μ-bpm)Ln(TTA)3]Cl were synthesized by using Ir(dfppy)2(bpm)Cl as the ligand coordinating to lanthanide complexes Ln(TTA)3·2H2O. The stability constants between Ir(dfppy)2(bpm)Cl and lanthanide ions were measured by fluorescence titration. The obvious quenching of visible emission from IrIII complex in the IrIII-LnIII (Ln = Nd, Yb, Er) bimetallic complexes indicates that energy transfer occurred from IrIII center to lanthanides. NIR emissions from NdIII, YbIII, and ErIII were obtained under the excitation of visible light by selective excitation of the IrIII-based chromophore. It was proven that Ir(dfppy)2(bpm)Cl as the ligand could effectively sensitize NIR emission from NdIII, YbIII, and ErIII.  相似文献   

4.
Four half‐sandwich iridiumIII (IrIII) triphenylamine or carbazole‐modified 2‐phenylpyridine (TPA/Cz‐PhPy) complexes ([(η5‐Cp*)Ir(C^N)Cl]) were synthesized and characterized. Compared with cisplatin, these complexes show higher activity to A549, HepG2 and HeLa cells, with the IC50 values changed from 2.5 ± 0.1 μM to 14.8 ± 2.6 μM. Additionally, complexes could effectively prevent the migration of cancer cells. IrIII TPA/Cz‐PhPy complexes could bind to protein and transport through serum protein, catalyze the oxidation of nicotinamide‐adenine dinucleotid (NADH) and induce the accumulation of reactive oxygen species, and eventually lead to apoptosis, which was also confirmed by flow cytometry. Moreover, prominent targeted fluorescence property confirmed that IrIII TPA/Cz‐PhPy complexes were involved in non‐energy dependent intracellular uptake mechanism, effectively accumulated in lysosomes and damage the integrity of acidic lysosomes, and eventually induce cell death. Above all, TPA/Cz‐appended half‐sandwich IrIII phenylpyridine complexes are promising anticancer agents with dual functions, including migration inhibition and lysosomal damage.  相似文献   

5.
Peripherally metalated porphyrinoids are promising functional π‐systems displaying characteristic optical, electronic, and catalytic properties. In this work, 5‐(2‐pyridyl)‐ and 5,10,15‐tri(2‐pyridyl)‐BIII‐subporphyrins were prepared and used to produce cyclometalated subporphyrins by reactions with [Cp*IrCl2]2, which proceeded through an efficient C?H activation to give the corresponding mono‐ and tri‐IrIII complexes, respectively. While the mono‐IrIII complex was obtained as a diastereomeric mixture, a C3‐symmetric tri‐IrIII complex with the three Cp*‐units all at the concave side was predominantly obtained in a high yield of 90 %, which displays weak NIR phosphorescence even at room temperature in degassed CH2Cl2, differently from the mono‐IrIII complexes.  相似文献   

6.
Encapsulation and luminescence studies of [Ir(ppy)2(bpy)]Cl (ppy=2‐phenylpyridinate, bpy=2,2′‐bipyridine) within a hexameric resorcinarene capsule are reported. One IrIII complex cation was encapsulated within the capsule, as demonstrated by NMR and dynamic light scattering (DLS) studies. The emission color of the IrIII complex was drastically changed from orange to yellow by encapsulation, in contrast with the lack of significant changes in the absorption spectrum. The hexameric capsule effectively hampers the non‐radiative pathway to increase both the luminescence quantum yield and the exited state lifetime. The luminescent properties of the encapsulated IrIII complex depend on the ratio of IrIII complex to the resorcinarene monomer as well as the concentration of resorcinarene monomer owing to the reversible process of self‐assembly of the hexameric capsule. Quenching experiments revealed that the IrIII complex in the capsule was effectively separated from quenchers.  相似文献   

7.
The complex IrIII(phpy)2(nala) with phpyH = 2-phenylpyridine and nalaH = 3-(2-naphthyl)alanine was prepared and characterized. The electronic spectrum of the complex shows long-wavelength absorptions which are attributed to the IrIII(phpy)2 chromophore. The lowest-energy excited state is a metal-to-ligand charge transfer (MLCT) triplet which is emissive under ambient conditions. Excitation of the naphthyl chromophore at shorter wavelength is followed by an efficient energy transfer to the IrIII(phpy)2 fragment.  相似文献   

8.
Although cyclometalated IrIII complexes have emerged as promising photosensitizers for photodynamic therapy, some key drawbacks still hamper clinical translation, such as operability in the phototherapeutic window and reactive oxygen species (ROS) production efficiency and selectivity. In this work, a cyclometalated IrIII complex conjugated to a far‐red‐emitting coumarin, IrIII–COUPY, is reported with highly favourable properties for cancer phototherapy. IrIII–COUPY was efficiently taken up by HeLa cells and showed no dark cytotoxicity and impressive photocytotoxicity indexes after irradiation with green and blue light, even under hypoxia. Importantly, a clear correlation between cell death and intracellular generation of superoxide anion radicals after visible light irradiation was demonstrated. This strategy opens the door to novel fluorescent photodynamic therapy agents with promising applications in theragnosis.  相似文献   

9.
The synthesis of two new IrIII complexes which are effectively isostructural with well‐established [Ru(NN)2(dppz)]2+ systems is reported (dppz=dipyridophenazine; NN=2,2′‐bipyridyl, or 1,10‐phenanthroline). One of these IrIII complexes is tricationic and has a conventional N6 coordination sphere. The second dicationic complex has a N5C coordination sphere, incorporating a cyclometalated analogue of the dppz ligand. Both complexes show good water solubility. Experimental and computational studies show that the photoexcited states of the two complexes are very different from each other and also differ from their RuII analogues. Both of the complexes bind to duplex DNA with affinities that are two orders of magnitude higher than previously reported Ir(dppz)‐based systems and are comparable with RuII(dppz) analogues.  相似文献   

10.
The synthesis of two new luminescent dinuclear IrIII–RuII complexes containing tetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐h:2′′′,3′′′‐j]phenazine (tpphz) as the bridging ligand is reported. Unlike many other complexes incorporating cyclometalated IrIII moieties, these complexes display good water solubility, allowing the first cell‐based study on IrIII–RuII bioprobes to be carried out. Photophysical studies indicate that emission from each complex is from a RuII excited state and both complexes display significant in vitro DNA‐binding affinities. Cellular studies show that each complex is rapidly internalised by HeLa cells, in which they function as luminescent nuclear DNA‐imaging agents for confocal microscopy. Furthermore, the uptake and nuclear targeting properties of the complex incorporating cyclometalating 2‐(4‐fluorophenyl)pyridine ligands around its IrIII centre is enhanced in comparison to the non‐fluorinated analogue, indicating that fluorination may provide a route to promote cell uptake of transition‐metal bioprobes.  相似文献   

11.
Novel phosphorescent hydrogels have been explored by immobilizing an IrIII metal complex into the matrices of hydrogels. FTIR spectra demonstrate that the IrIII–PNaAMPS hydrogel is achieved by irreversible incorporation of positively charged [Ir(ppy)2(dmbpy)]Cl (ppy = 2‐phenylpyrine, dmbpy = 4,4′‐dimethyl‐2,2′‐bipyridine) into negatively charged poly(2‐acrylamido‐2‐methylpropane sulfonic acid sodium) (PNaAMPS) hydrogel via electrostatic interaction. The photoluminescent spectra indicate that the IrIII–PNaAMPS hydrogel exhibits stable phosphorescence. In vitro cultivation of human retinal pigment epithelial cells demonstrates the cytocompatibility of the IrIII–PNaAMPS hydrogel. This work herein represents a facile pathway for fabrication of phosphorescent hydrogels.  相似文献   

12.
A new cyclometalated ligand 1,3-dimethyl-5-phenyl-1H-[1,2,4]-triazole (pdt) was designed and synthesized. And the corresponding IrIII complex Ir(pdt)2(phen5f) (phen5f stands for 4,4,5,5,5-pentafluoro-1-(1′,10′-phenanthrolin-2′-yl)-pentane-1,3-dionate) was obtained. According to the measurement of the lowest triplet state energy level of Ir(pdt)2(phen5f), it is suitable for sensitizing NIR (near-infrared) lanthanide ions instead of EuIII. The bimetallic complex [(pdt)2Ir(μ-phen5f)YbCl2 · 2CH3CH2OH · H2O]Cl was synthesized by the approach of “complexes as ligands”. Data showed that the emission quenching was observed in the solid state when the IrIII–YbIII complex was compared with the IrIII complex, which implied that energy transfer might occur from IrIII complex-ligand to YbIII ion. Upon irradiation of the MLCT (metal-to-ligand charge transfer) absorption of Ir(pdt)2(phen5f), the characteristic emission of YbIII was obtained with the peak around 978 nm.  相似文献   

13.
To take advantage of the luminescent properties of d6 transition metal complexes to label proteins, versatile bifunctional ligands were prepared. Ligands that contain a 1,2,3‐triazole heterocycle were synthesised using CuI catalysed azide–alkyne cycloaddition “click” chemistry and were used to form phosphorescent IrIII and RuII complexes. Their emission properties were readily tuned, by changing either the metal ion or the co‐ligands. The complexes were tethered to the metalloprotein transferrin using several conjugation strategies. The IrIII/RuII–protein conjugates could be visualised in cancer cells using live cell imaging for extended periods without significant photobleaching. These versatile phosphorescent protein‐labelling agents could be widely applied to other proteins and biomolecules and are useful alternatives to conventional organic fluorophores for several applications.  相似文献   

14.
A series of homoditopic ligands H2LCX (X=4–6) has been designed to self‐assemble with lanthanide ions (LnIII), resulting in neutral bimetallic helicates of overall composition [Ln2(LCX)3] with the aim of testing the influence of substituents on the photophysical properties, particularly the excitation wavelength. The complex species are thermodynamically stable in water (log β23 in the range 26–28 at pH 7.4) and display a metal‐ion environment with pseudo‐D3 symmetry and devoid of coordinated water molecules. The emission of EuIII, TbIII, and YbIII is sensitised to various extents, depending on the properties of the ligand donor levels. The best helicate is [Eu2(LC5)3] with excitation maxima at 350 and 365 nm and a quantum yield of 9 %. The viability of cervix cancer HeLa cells is unaffected when incubated with up to 500 μm of the chelate during 24 h. The helicate permeates into the cells by endocytosis and locates into lysosomes, which co‐localise with the endoplasmatic reticulum, as demonstrated by counterstaining experiments. The relatively long excitation wavelength allows easy recording of bright luminescent images on a confocal microscope (λexc=405 nm). The new lanthanide bioprobe remains undissociated in the cell medium, and is amenable to facile derivatisation. Examination of data for seven EuIII and TbIII bimetallic helicates point to shortcomings in the phenomenological rules of thumb between the energy gap ΔE(3ππ*–5DJ) and the sensitisation efficiency of the ligands.  相似文献   

15.
Bis(2‐{6‐(diethylcarbamoyl)‐4‐[(4‐isothiocyanatophenyl)ethynyl]pyridin‐2′‐yl}‐1‐ethylbenzimidazol‐5‐yl)methane ( L G ) reacts with trivalent lanthanide ions in acetonitrile to yield triple‐stranded dimetallic helicates [Ln2( L G )3]6+. 1H‐NMR Data point to the helicates being the only species formed under stoichiometric conditions and having a time‐averaged D3 symmetry on the NMR time scale. The photophysical properties of L G and its helicates are discussed with respect to the closely related ligands L B , L E , and their complexes, two ligands devoid of the isothiocyanatophenylethynyl substituent. The quantum yield of the ligand fluorescence is three times smaller compared to L E , while that of the EuIII‐centered luminescence (1.1%) is three times larger. On the other hand, the luminescence of TbIII is not sensitized by L G . This is explained in terms of energy differences between the singlet and triplet states on one hand, and between the 0‐phonon transition of the triplet state and the excited metal ion states on the other. This work demonstrates that bulky substituents in the 4‐position of the pyridine ring do not prevent the formation of triple‐stranded helicates, opening the way for luminescent probes that can easily be coupled to biological materials.  相似文献   

16.
Previously elusive iridium dihydride alkene complexes have been identified and characterized by NMR spectroscopy in solution. Reactivity studies demonstrated that these complexes are catalytically competent intermediates. Additional H2 is required to convert the catalyst‐bound alkene into the hydrogenation product, supporting an IrIII/IrV cycle via an [IrIII(H)2(alkene)(H2)(L)]+ intermediate, as originally proposed based on DFT calculations. NMR analyses indicate a reaction pathway proceeding through rapidly equilibrating isomeric dihydride alkene intermediates with a subsequent slow enantioselectivity‐determining step. As in the classical example of asymmetric hydrogenation with rhodium diphosphine catalysts, it is a minor, less stable intermediate that is converted into the major product enantiomer.  相似文献   

17.
Oxidative addition of aryl halides, ArX, to chlorocarbonylbis(triphenylphos-phine)iridium(I) yields iridium(III) aryl complexes, IrCl(X)(Ar)(CO)(PPh3)2. The reactivity of the aryl halide decreases in the order I > Br > C1, and electron-withdrawing substituents in the aryl ring accelerate the reaction. The IrIII compounds may be utilised as arylating agents.  相似文献   

18.
A series of IrIII complexes, based on 1,10‐phenanthroline featuring aryl acetylene chromophores, were prepared and investigated as triplet photosensitizers. The complexes were synthesized by Sonogashira cross‐coupling reactions using a “chemistry‐on‐the‐complex” method. The absorption properties and luminescence lifetimes were successfully tuned by controlling the number and type of light‐harvesting group. Intense UV/Vis absorption was observed for the IrIII complexes with two light‐harvesting groups at the 3‐ and 8‐positions of the phenanthroline. The asymmetric IrIII complex (with a triphenylamine (TPA) and a pyrene moiety attached) exhibited the longest lifetime. Red emission was observed for all the complexes in deaerated solutions at room temperature. Their emission at low temperature (77 K) and nanosecond time‐resolved transient difference absorption spectra revealed the origin of their triplet excited states. The singlet‐oxygen (1O2) sensitization and triplet‐triplet annihilation (TTA)‐based upconversion were explored. Highly efficient TTA upconversion (ΦUC=28.1 %) and 1O2 sensitization (ΦΔ=97.0 %) were achieved for the asymmetric IrIII complex, which showed intense absorption in the visible region (λabs=482 nm, ?=50900 m ?1 cm?1) and had a long‐lived triplet excited state (53.3 μs at RT).  相似文献   

19.
The bidentate P,N hybrid ligand 1 allows access for the first time to novel cationic phosphinine‐based RhIII and IrIII complexes, broadening significantly the scope of low‐coordinate aromatic phosphorus heterocycles for potential applications. The coordination chemistry of 1 towards RhIII and IrIII was investigated and compared with the analogous 2,2′‐bipyridine derivative, 2‐(2′‐pyridyl)‐4,6‐diphenylpyridine ( 2 ), which showed significant differences. The molecular structures of [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl (Cp*=pentamethylcyclopentadienyl) were determined by means of X‐ray diffraction and confirm the mononuclear nature of the λ3‐phosphinine–RhIII and IrIII complexes. In contrast, a different reactivity and coordination behavior was found for the nitrogen analogue 2 , especially towards RhIII as a bimetallic ion pair [RhCl(Cp*)( 2 )]+[RhCl3(Cp*)]? is formed rather than a mononuclear coordination compound. [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl react with water regio‐ and diastereoselectively at the external P?C double bond, leading exclusively to the anti‐addition products [MCl(Cp*)( 1 H ? OH)]Cl as confirmed by X‐ray crystal‐structure determination.  相似文献   

20.
A Crabtree‐type IrI complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent IrI complex (Φ=0.038) into a highly fluorescent IrIII species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号