首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Difluorinated alkenoate ethyl 3,3-difluoro-2-(N,N-diethylcarbamoyloxy)-2-propenoate reacts rapidly and in high yield with furan and a range of substituted furans in the presence of a tin(IV) catalyst. Non-fluorinated congener 2-(N,N-diethylcarbamoyloxy)-2-propenoate fails to react at all under the same conditions. These reactions have been explored using density functional theory (DFT) calculations. They reveal a highly polar transition state, which is stabilized by the Lewis acid catalyst SnCl(4) and by polar solvents. In the presence of both catalyst and solvent, a two-step reaction is predicted, corresponding to the stepwise formation of the two new carbon-carbon bonds via transition states which have similar energies in all cases. Our experimental observations of the lack of reaction of the non-fluorinated dienophile, the stereochemical outcomes, and the rate acceleration accompanying furan methylation are all well predicted by our calculations. The calculated free energy barriers generally correlate well with measured reaction rates, supporting a reaction mechanism in which zwitterionic character is developed strongly. An in situ ring opening reaction of exo-cycloadduct ethyl exo-2-(N,N-diethylcarbamoyloxy)-3,3-difluoro-7-oxabicyclo[2.2.1]hept-5-enyl-2-endo-carboxylate, which results in the formation of cyclic carbonate ethyl 4,4-difluoro-5-hydroxy-2-oxo-5,7a-dihydro-4H-benzo[1,3]dioxole-3a-carboxylate by a Curtin-Hammett mechanism, has also been examined. Substantial steric opposition to Lewis acid binding prevents carbonate formation from 2-substituted furans.  相似文献   

2.
A bis‐cyclometalated chiral‐at‐metal rhodium complex catalyzes the Diels–Alder reaction between N‐Boc‐protected 3‐vinylindoles (Boc=tert‐butyloxycarbonyl) and β‐carboxylic ester‐substituted α,β‐unsaturated 2‐acyl imidazoles with good‐to‐excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92–99 % ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2‐acyl imidazole dienophile by two‐point binding and overrules the preferred regioselectivity of the uncatalyzed reaction.  相似文献   

3.
《Tetrahedron: Asymmetry》2001,12(13):1829-1835
The Diels–Alder reactions between cyclopentadiene 2 and (E)-3-butenoyl-1,3-oxazolidin-2-one 1 catalysed by several TADDOL-TiCl2 complexes have been studied with different [dienophile]/[catalyst] ratios and different concentrations of reagents and catalyst. The enantioselectivity of some of the reactions depends on these factors, which indicates the participation of intermediate complexes with different catalyst and dienophile compositions (1:1, 1:2 and 2:1). The best results are obtained under conditions that favour the formation of an equimolecular intermediate, whereas the conditions favouring the formation of intermediates containing two molecules of dienophile and one of catalyst give rise to lower enantiomeric excesses (e.e.s). In one case the asymmetric induction was not dependent on the above factors, meaning that the effect described strongly depends on the structure of the chiral ligand. The results described show that this kind of mechanistic study complements those carried out on the influence of the enantiomeric composition of the chiral ligand on the enantioselectivity.  相似文献   

4.
The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Br?nsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Br?nsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the α,β-unsaturated dienophile (carbonyl and carboxyl), whereas proton catalysis is limited to carbonyl compounds.  相似文献   

5.
We explore here the feasibility of employing molecular iodine as Lewis acid catalyst for Diels–Alder (DA) reaction using conceptual density functional theory (DFT) based reactivity indices and transition state analysis at the DFT (B3LYP)/6-31G(d) level of theory. Catalytic effect of iodine is probed using reactivity indices considering six different substituents for the diene at the 2-position and five different substituents at the 1-position of the olefinic dienophile. Comparison of HOMO diene–LUMO dienophile gap between the catalyzed and uncatalyzed processes confirms catalytic effect of iodine in DA reaction. Mechanistic details of both the uncatalyzed and the iodine catalyzed processes is achieved through transition state analysis for four possible stereoisomeric reactive channels with respect to isoprene–acrolein model reaction. A significant cutback in activation barrier is observed in presence of iodine. Influence of iodine on regioselectivity of the reaction and asynchronicity of bond formation is analyzed using local version of the HSAB principle and philicity index.  相似文献   

6.
This article describes the Diels–Alder reaction between methyl thiocinnamates, substituted at the para position by electron-donating and electron-withdrawing groups, with cyclopentadiene in the presence of catechol boron bromide (CBB) as a Lewis acid catalyst. The adduct configuration was confirmed by 1H NMR coupling constants and single-crystal x-ray diffraction. Total endo stereoselectivity was observed in all reactions and was attributed to the effective secondary interaction between the boron atom and the incipient double bond in the norbonene resulting from the planar geometry of the catalyst. 13C NMR chemical shifts of the coordinated dienophile carbonyl carbons with CBB compared to those of the non coordinated thiocinammates suggest a strong complexation with the catalyst.  相似文献   

7.
The Lewis acid(LA)-catalyzed Diels–Alder reaction between isoprene and methyl acrylate was investigated quantum chemically using a combined density functional theory and coupled-cluster theory approach. Computed activation energies systematically decrease as the strength of the LA increases along the series I2<SnCl4<TiCl4<ZnCl2<BF3<AlCl3. Emerging from our activation strain and Kohn–Sham molecular orbital bonding analysis was an unprecedented finding, namely that the LAs accelerate the Diels–Alder reaction by a diminished Pauli repulsion between the π-electron systems of the diene and dienophile. Our results oppose the widely accepted view that LAs catalyze the Diels–Alder reaction by enhancing the donor–acceptor [HOMOdiene–LUMOdienophile] interaction and constitute a novel physical mechanism for this indispensable textbook organic reaction.  相似文献   

8.
The Lewis acid(LA)‐catalyzed Diels–Alder reaction between isoprene and methyl acrylate was investigated quantum chemically using a combined density functional theory and coupled‐cluster theory approach. Computed activation energies systematically decrease as the strength of the LA increases along the series I2<SnCl4<TiCl4<ZnCl2<BF3<AlCl3. Emerging from our activation strain and Kohn–Sham molecular orbital bonding analysis was an unprecedented finding, namely that the LAs accelerate the Diels–Alder reaction by a diminished Pauli repulsion between the π‐electron systems of the diene and dienophile. Our results oppose the widely accepted view that LAs catalyze the Diels–Alder reaction by enhancing the donor–acceptor [HOMOdiene–LUMOdienophile] interaction and constitute a novel physical mechanism for this indispensable textbook organic reaction.  相似文献   

9.
Calcium bis-1,1,1,3,3,3-hexafluoroisopropoxide is shown to be an effective catalyst for Pictet-Spengler reactions of 3-hydroxyphenethylamine and 3-hydroxy-4-methoxyphenethylamine with various aldehydes and ketones. Previous Lewis acid catalyzed Pictet-Spengler reactions of unactivated ketones typically require two separate reactions (imine formation, cyclization) to obtain the same results. The reactions described within directly provide 1,1'-disubstituted tetrahydroisoquinolines from the corresponding amine and ketone. These rare examples of Pictet-Spengler reactions of unactivated ketones demonstrate the unique nature of calcium as a Lewis acid catalyst.  相似文献   

10.
The oxidative coupling of 2-naphthol and 3-hydroxy-2-naphthoate derivatives with a copper catalyst under an O2 atmosphere was carried out. The reaction in the presence of a catalytic amount of the Lewis acid, Yb(OTf)3, proceeded in a cross-coupling specific manner.  相似文献   

11.
Determining the structure of reactive intermediates is the key to understanding reaction mechanisms. To access these structures, a method combining structural sensitivity and high time resolution is required. Here ultrafast polarization‐dependent two‐dimensional infrared (P2D‐IR) spectroscopy is shown to be an excellent complement to commonly used methods such as one‐dimensional IR and multidimensional NMR spectroscopy for investigating intermediates. P2D‐IR spectroscopy allows structure determination by measuring the angles between vibrational transition dipole moments. The high time resolution makes P2D‐IR spectroscopy an attractive method for structure determination in the presence of fast exchange and for short‐lived intermediates. The ubiquity of vibrations in molecules ensures broad applicability of the method, particularly in cases in which NMR spectroscopy is challenging due to a low density of active nuclei. Here we illustrate the strengths of P2D‐IR by determining the conformation of a Diels–Alder dienophile that carries the Evans auxiliary and its conformational change induced by the complexation with the Lewis acid SnCl4, which is a catalyst for stereoselective Diels–Alder reactions. We show that P2D‐IR in combination with DFT computations can discriminate between the various conformers of the free dienophile N‐crotonyloxazolidinone that have been debated before, proving antiperiplanar orientation of the carbonyl groups and s‐cis conformation of the crotonyl moiety. P2D‐IR unequivocally identifies the coordination and conformation in the catalyst–substrate complex with SnCl4, even in the presence of exchange that is fast on the NMR time scale. It resolves a chelate with the carbonyl orientation flipped to synperiplanar and s‐cis crotonyl configuration as the main species. This work sets the stage for future studies of other catalyst–substrate complexes and intermediates using a combination of P2D‐IR spectroscopy and DFT computations.  相似文献   

12.
The effect of several Lewis acids on the CBS catalyst (named after Corey, Bakshi and Shibata) was investigated in this study. While 2H NMR spectroscopic measurements served as gauge for the activation capability of the Lewis acids, in situ FT‐IR spectroscopy was employed to assess the catalytic activity of the Lewis acid oxazaborolidine complexes. A correlation was found between the Δδ(2H) values and rate constants kDA, which indicates a direct translation of Lewis acidity into reactivity of the Lewis acid–CBS complexes. Unexpectedly, a significant deviation was found for SnCl4 as Lewis acid. The SnCl4–CBS adduct was much more reactive than the Δδ(2H) values predicted and gave similar reaction rates to those observed for the prominent AlBr3–CBS adduct. To rationalize these results, quantum mechanical calculations were performed. The frontier molecular orbital approach was applied and a good correlation between the LUMO energies of the Lewis acid–CBS–naphthoquinone adducts and kDA could be found. For the SnCl4–CBS–naphthoquinone adduct an unusual distortion was observed leading to an enhanced Lewis acidity. Energy decomposition analysis with natural orbitals for chemical valence (EDA‐NOCV) calculations revealed the relevant interactions and activation mode of SnCl4 as Lewis acid in Diels–Alder reactions.  相似文献   

13.
The molecular mechanism of the domino inter [4 + 2]/intra [3 + 2] cycloaddition reactions of nitroalkenes with enol ethers to give nitroso acetal adducts has been characterized using density functional theory methods with the B3LYP functional and the 6-31G basis set. The presence of Lewis acid catalyst and solvent effects has been taken into account to model the experimental environment. These domino processes comprise two consecutive cycloaddition reactions: the first one is an intermolecular [4 + 2] cycloaddition of the enol ether to the nitroalkene to give a nitronate intermediate, which then affords the final nitroso acetal adduct through an intramolecular [3 + 2] cycloaddition reaction. The intermolecular [4 + 2] cycloaddition can be considered as a nucleophilic attack of the enol ether to the conjugated position of the nitroalkene, with concomitant ring closure and without intervention of an intermediate. For this cycloaddition process, the presence of the Lewis acid favors the delocalization of the negative charge that is being transferred from the enol ether to the nitroalkene and decreases the activation energy of the first cycloaddition. The [4 + 2] cycloaddition presents a total regioselectivity, while the endo/exo stereoselectivity depends on the bulk of the Lewis acid used as catalyst. Thus, for small Lewis acid catalyst, modeled by BH(3), the addition presents an endo selectivity. The [3 + 2] cycloaddition reactions present an total exo selectivity, due to the constraints imposed by the tether. Inclusion of Lewis acid catalyst and solvent effects decrease clearly the barrier for the first [4 + 2] cycloaddition relative to the second [3 + 2] one. Calculations for the activation parameters along this domino reaction allow to validate the results obtained using the potential energy barriers.  相似文献   

14.
Ward DE  Souweha MS 《Organic letters》2005,7(16):3533-3536
Thermal Diels-Alder reaction of 2,4-hexadienol with methyl acrylate is unselective. By simultaneous coordination of diene and dienophile to a chiral bimetallic Lewis acid catalyst, a LACASA-DA reaction occurs with complete control of regio-, diastereo-, and enantioselectivity to give a single adduct. [reaction: see text]  相似文献   

15.
Amidines and guanidines are important functional groups in molecular recognition and host-guest chemistry. Here it is shown that lipophilic amidinium ions catalyze a cycloaddition reaction representing the key step of the Quinkert-Dane estrone synthesis. Hydrogen-bond-mediated association with the organic cation leads to an electrophilic activation of the dienophile and to enhanced rates of the Diels-Alder reaction. The observed effects are similar to those expected from mild Lewis acids. In competition experiments, amidinium catalysis favors the reaction of the less electron deficient dienophile.  相似文献   

16.
Diels-Alder reactions with 3-(acyloxy)acrylates using chiral Lewis acid catalysts have been successfully carried out. These reactions proceed with high enantioselectivity when a chiral Lewis acid derived from Cu(OTf)2 and a bisoxazoline is used. The facility of the reaction is dependent on the nature of the acyloxy group in the dienophile.  相似文献   

17.
The synthesis of the title spirodione, a new class of auxiliary based chiral synthon, using (−)-menthone having a unique carbon-carbon bond is described. Diels-Alder reactions were carried out with variety of dienes using the title auxiliary as a chiral dienophile in the presence of diethyl aluminium chloride as Lewis acid catalyst to afford the cycloadduct with good diastereoselectivity. The configurations of the chiral synthon and cycloadducts were determined by X-ray crystallography. Methodology for detachment of the chiral auxiliary from the cycloadducts has been developed.  相似文献   

18.
Chiral macromolecules have been widely used as synthetic pockets to mimic natural enzymes and promote asymmetric reactions. An achiral host, cucurbit[8]uril (CB[8]), was used for an asymmetric Lewis acid catalyzed Diels–Alder reaction. We achieved a remarkable increase in enantioselectivity and a large rate acceleration in the presence of the nanoreactor by using an amino acid as the chiral source. Mechanistic and computational studies revealed that both the amino acid–Cu2+ complex and the dienophile substrate are included inside the macrocyclic host cavity, suggesting that contiguity and conformational constraints are fundamental to the catalytic process and rate enhancement. These results pave the way towards new studies on asymmetric reactions catalyzed in confined achiral cavities.  相似文献   

19.
合成了新型双齿配体5-羟基-1-(6-氯吡啶-2-基)-1H-吡唑-3-羧酸甲酯及其钯配合物并进行了表征. 通过微热量计测定计算了配合物形成的热力学和动力学参数, 计算结果显示, 该配合物极易形成, 在空气和溶液中稳定, 可以用作Suzuki反应的催化剂. 使用1%(摩尔分数)的催化剂, 以2倍量的氢氧化钾为碱, 乙醇-水为溶剂, 在120℃微波加热2 min, 使具有不同电子和空间效应的溴代芳烃和苯硼酸或对甲氧基苯硼酸反应, 偶联产物的分离产率可以达到80.7%~95.9%. 氯代芳烃也以合适的产率得到偶联产物.  相似文献   

20.
A stable asymmetric intramolecular Povarov reaction has been established to provide an efficient method to access structurally diverse trans,trans-trisubstituted tetrahydrochromeno[4,3-b]quinolines in high stereoselectivities of up to >99:1 diastereomeric ratio and 99 % enantiomeric excess, without any purification step. Additionally, to facilitate large-scale application of this method, a low catalyst loading protocol was employed, 0.2 mol % chiral phosphoric acid, which provided the cycloadducts without any loss in yield and enantioselectivity. Theoretical studies revealed that the reaction occurred through a sequential Mannich reaction and an intramolecular Friedel–Crafts reaction, wherein the phosphoric acid acted as a bifunctional catalyst to activate the para-phenolic dienophile and N-2-hydroxy-2-azadiene simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号