首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aluminum(I) compound NacNacAl (NacNac=[ArNC(Me)CHC(Me)NAr]?, Ar=2,6‐iPr2C6H3, 1 ) shows diverse and substrate‐controlled reactivity in reactions with N‐heterocycles. 4‐Dimethylaminopyridine (DMAP), a basic substrate in which the 4‐position is blocked, induces rearrangement of NacNacAl by shifting a hydrogen atom from the methyl group of the NacNac backbone to the aluminum center. In contrast, C?H activation of the methyl group of 4‐picoline takes place to produce a species with a reactive terminal methylene. Reaction of 1 with 3,5‐lutidine results in the first example of an uncatalyzed, room‐temperature cleavage of an sp2 C?H bond (in the 4‐position) by an AlI species. Another reactivity mode was observed for quinoline, which undergoes 2,2′‐coupling. Finally, the reaction of 1 with phthalazine produces the product of N?N bond cleavage.  相似文献   

2.
Reaction of NacNacAl (NacNac=[DippNC(Me)CHC(Me)NDipp]) with one equivalent of benzophenone affords a ketylate species NacNacAl(η2(C,O)-OCPh2) that undergoes easy cyclization reactions with unsaturated substrates. The scope of substrates included benzophenone, aldimine (PhNC(Ph)H), quinoline, phenyl nitrile, trimethylsilyl azide, and a saturated cyclic thiourea. The latter substrate reacted by an unusual C−N cleavage that left the C=S functionality intact. The new products were characterized by NMR spectroscopy and X-ray diffraction analysis.  相似文献   

3.
The treatment of cyclic thioureas with the aluminum(I) compound NacNacAl ( 1 ; NacNac=[ArNC(Me)CHC(Me)NAr]?, Ar=2,6‐Pri2C6H3) resulted in oxidative cleavage of the C=S bond and the formation of 3 and 5 , the first monomeric aluminum complexes with an Al=S double bond stabilized by N‐heterocyclic carbenes. Compound 1 also reacted with triphenylphosphine sulfide in a similar manner, which resulted in cleavage of the P=S bond and production of the adduct [NacNacAl=S(S=PPh3)] ( 8 ). The Al=S double bond in 3 can react with phenyl isothiocyanate to furnish the cycloaddition product 9 and zwitterion 10 as a result of coupling between the liberated carbene and PhN=C=S. All novel complexes were characterized by multinuclear NMR spectroscopy, and the structures of 5 , 9 , and 10 were confirmed by X‐ray diffraction analysis. The nature of the Al=S bond in 5 was also probed by DFT calculations.  相似文献   

4.
The reactivity of an aluminium(I) diketiminate compound NacNacAl (NacNac is [ArNC(Me)CHC(Me)NAr]?, where Ar is 2,6-diisopropylphenyl) towards arenes has been systematically explored. Heating NacNacAl in benzene results in a fragmentation of the NacNac moiety due to cleavage of the CN bond, while anthracene adds to the main group carbenoid in a [4+1] fashion. Reactions with phenanthrene, triphenylene and fluoranthene demonstrate a reversible [4+1] addition process.  相似文献   

5.
The AlI compound NacNacAl ( 1 , NacNac = [ArNC(Me)CHC(Me)NAr], Ar = 2,6-iPr2C6H3) serves as a template for the chemoselective coupling between carbonyls (benzophenone, fenchone, isophorone, p-tolyl benzoate, N,N-dimethylbenzamide, (1-phenylethylidene)aniline) and pyridine. With the CH-acidic ketone (1R)-(+) camphor, the reaction affords a hydrido alkoxide compound of Al, formed as the result of enolization, whereas an enolizable imine, (1-phenylethylidene)aniline, and the bulky ketone isophorone, still chemoselectively couple with pyridine. In contrast, reaction with the ester p-tolyl benzoate results in cleavage of the ester bond together with replacement of the alkoxy group by a hydrogen atom of the pyridine moiety. This study demonstrates that for carbonyl substrates featuring phenyl substituents, the reaction proceeds via intermediate formation of η2(C,X)-coordinated (X = O, N) carbonyl adducts, whereas the reaction of 1 with (R)-(−)-fenchone in the absence of pyridine leads to CH activation in the pendant isopropyl group of the Ar substituent of the NacNac ligand.  相似文献   

6.
Transition-metal catalyzed coupling to form C−N bonds is significant in chemical science. However, the inert nature of N2 and CO2 renders their coupling quite challenging. Herein, we report the activation of dinitrogen in the mild plasma atmosphere by the gas-phase monometallic YB1–4 anions and further coupling of CO2 to form C−N bonds by using mass spectrometry and theoretical calculation. The observed product anions are NCNBO and N(BO)2, accompanied by the formation of neutral products YO and YB0–2NC, respectively. We can tune the reactivity and the type of products by manipulating the number of B atoms. The B atoms in YB1–4N2 act as electron donors in CO2 reduction reactions, and the carbon atom originating from CO2 serves as an electron reservoir. This is the first example of gas-phase monometallic anions, which are capable to realize the functionalization of N2 with CO2 through C−N bond formation and N−N and C−O bond cleavage.  相似文献   

7.
Iridabicycles [Ir{κ3-N,C,O-(pyC(H)=C(C(O)Me)2}(Cl)(L−L)](L−L=cod (cod=1,5-cyclooctadiene), 1 a ; bipy (bipy=2,2’-bipyridine), 1 b ) have been obtained by oxidative coordination of 3-(pyridine-2-yl-methylene)pentane-2,4-dione L1 , to the complexes [{Ir(μ-Cl)(cod)}2] and [{Ir(μ-Cl)(coe)2}2] (coe=cis-cyclooctene), the latter in the presence of bipy. Remarkably, cleavage of the C3−C(O)Me bond of L1 has instead been achieved in the reaction with [Ir(Cl)(dmb)2] (dmb=2,3-dimethylbutadiene), yielding a compound formulated as [Ir{κ2-N,C-(pyC(H)C(C(O)Me))}(CO)(μ-Cl)(Me)]2, 2 . Treatment of dimer 2 with DMSO or PMe3 produced the complexes[Ir{κ2-N,C-(pyC(H)C(C(O)Me)}(CO)Cl(Me)L] (L=DMSO, 3 a ; PMe3, 3 b ). Plausible mechanisms for the reactions leading to complexes 1 and 2 are proposed by means of DFT calculations.  相似文献   

8.
We report on reactions of heteroleptic metallasilylenes L1(Cl)MSiL2 (M=Al 1 , Ga 2 , L1=HC[C(Me)NDipp]2, Dipp=2,6-iPr2C6H3; L2=PhC(NtBu)2) with CO2, N2O, and Me3SiN3, yielding the corresponding carbonate complexes L1(Cl)MOSi(CO32O,O−)L2 (M=Al 3 , Ga 4 ), silanoic esters L1(Cl)MOSi(O)L2 (M=Al 5 , Ga 6 ), and silaimine L1(Cl)GaSi(NSiMe3)L2 ( 8 ), whereas {L2Si[N(SiMe3)Al(Cl)C(Me)NDipp][CHC(Me)N(Dipp)]} 7 was formed by C−C bond cleavage of the L1 ligand. Compounds 3 – 8 were characterized by NMR (1H, 13C) and IR spectroscopy, elemental analysis and single crystal X-ray diffraction.  相似文献   

9.
A dicationic triruthenium complex containing a μ3-η3-C3 ring, [(Cp*Ru)3(μ3-η3-C3MeH2−)(μ3-CH)(μ-H)]2+ ( 1 a , Cp*=η5-C5Me5), reacted with ammonia to yield a μ-amido complex, [(Cp*Ru)33-η3-CHCMeCH) (μ3-CH)(μ-NH2)]2+ ( 5 ), via N−H bond scission. Subsequent treatment with base resulted in C−N bond formation to yield a μ3-η2:η2-1-azabutadien-4-yl complex, [(Cp*Ru)3(μ3-CH)(μ3-η2:η2-NH=CH−CMe=CH−)]+ ( 6 a ). The azaruthenacyclopentadiene skeleton was alternatively synthesized by the photolysis of mono-cationic complex [(Cp*Ru)3(μ3-η3-C3RH2−)(μ3-CH)]+ ( 2 a ; R=Me, 2 b ; R=H) in the presence of ammonia. The C3 ring skeleton was broken via the electron transfer to the π*(C−C) orbital in the C3 ring, and a transiently generated unsaturated μ3-allylic species can take up ammonia, resulting in N−H bond scission followed by C−N bond formation.  相似文献   

10.
The reagent RK [R=CH(SiMe3)2 or N(SiMe3)2] was expected to react with the low-valent (DIPPBDI)Al (DIPPBDI=HC[C(Me)N(DIPP)]2, DIPP=2,6-iPr-phenyl) to give [(DIPPBDI)AlR]K+. However, deprotonation of the Me group in the ligand backbone was observed and [H2C=C(N-DIPP)−C(H)=C(Me)−N−DIPP]AlK+ ( 1 ) crystallized as a bright-yellow product (73 %). Like most anionic AlI complexes, 1 forms a dimer in which formally negatively charged Al centers are bridged by K+ ions, showing strong K+⋅⋅⋅DIPP interactions. The rather short Al–K bonds [3.499(1)–3.588(1) Å] indicate tight bonding of the dimer. According to DOSY NMR analysis, 1 is dimeric in C6H6 and monomeric in THF, but slowly reacts with both solvents. In reaction with C6H6, two C−H bond activations are observed and a product with a para-phenylene moiety was exclusively isolated. DFT calculations confirm that the Al center in 1 is more reactive than that in (DIPPBDI)Al. Calculations show that both AlI and K+ work in concert and determines the reactivity of 1 .  相似文献   

11.
Al/P- and Ga/P-based frustrated Lewis pairs (FLPs) reacted with an azirine under mild conditions under cleavage of the heterocycle on two different positions. Opening of the C−C bond yielded an unusual nitrile–ylide adduct in which a C−N moiety coordinated to the FLP backbone. Cleavage of a C−N bond afforded the thermodynamically favored enamine adduct with the N atom bound to P and Al or Ga atoms. Ring closure was observed upon treatment of an Al/P FLP with electronically unsaturated substrates (4-(1-cyclohexenyl)-1-aza-but-1-en-3-ynes) and yielded by C−N bond formation hexahydroquinoline derivatives, which coordinated to the FLP through P−C and Al−C bonds. Diphenylcyclopropenone showed a diverse reactivity, which depending on steric shielding and the polarizing effect of Al or Ga atoms afforded different products. An AltBu2/P FLP yielded an adduct with the C=O group coordinated to P and Al. The dineopentyl derivative gave an equilibrium mixture consisting of a similar product and a simple adduct with O bound to Al and a three-coordinate P atom. Both compounds co-crystallize. The Ga/P FLP only formed the simple adduct with the same substrate. Rearrangement resulted in all cases in C3-ring cleavage and migration of a mesityl group from P to a former ring C atom by C−C bond formation. Diphenylthiocyclopropenone (evidence for the presence of P=C bonds) and an imine derivative afforded similar products.  相似文献   

12.
Strong main-group Lewis acids such as silylium ions are known to effectively promote heterolytic C(sp3)−F bond cleavage. However, carrying out the C(sp2)−F bond transformation of vinylic C−F bonds has remained an unmet challenge. Herein, we describe our development of a new and simple strategy for vinylic C−F bond transformation of α-fluorostyrenes with silyl ketene acetals catalyzed by B(C6F5)3 under mild conditions. Our theoretical calculations revealed that a stabilized silylium ion, which is generated from silyl ketene acetals by carboboration, cleaves the C−F bond of α-fluorostyrenes. A comparative study of α-chloro or bromostyrenes demonstrated that our reaction can be applied only to α-fluorostyrenes because the strong silicon-fluorine affinity facilitates an intramolecular interaction of silylium ions with fluorine atom to cleave the C−F bond. A broad range of α-fluorostyrenes as well as a range of silyl ketene acetals underwent this C−F bond transformation.  相似文献   

13.
We report a challenging copper-catalyzed Cformyl−H arylation of salicylaldehydes with arylboronic acids that involves unique salicylaldehydic copper species that differ from reported salicylaldehydic rhodacycles and palladacycles. This protocol has high chemoselectivity for the Cformyl−H bond compared to the phenolic O−H bond involving copper catalysis under high reaction temperatures. This approach is compatible with a wide range of salicylaldehyde and arylboronic acid substrates, including estrone and carbazole derivatives, which leads to the corresponding arylation products. Mechanistic studies show that the 2-hydroxy group of the salicylaldehyde substrate triggers the formation of salicylaldehydic copper complexes through a CuI/CuII/CuIII catalytic cycle.  相似文献   

14.
A tetrahedral CuII alkylperoxido complex [CuII(TMG3tach)(OOCm)]+ ( 1OOCm ) (TMG3tach={2,2′,2′′-[(1s,3s,5s)-cyclohexane-1,3,5-triyl]tris-(1,1,3,3-tetramethyl guanidine)}, OOCm=cumyl peroxide) is prepared and characterized by UV/Vis, cold-spray ionization mass spectroscopy (CSI-MS), resonance Raman, and EPR spectroscopic methods. Product analysis of the self-decomposition reaction of 1OOCm in acetonitrile (MeCN) indicates that the reaction involves O−O bond homolytic cleavage of the peroxide moiety with concomitant C−H bond activation of the solvent molecule. When an external substrate such as 1,4-cyclohexadiene (CHD) is added, the O−O bond homolysis leads to C−H activation of the substrate. Furthermore, the reaction of 1OOCm with 2,6-di-tert-butylphenol derivatives produces the corresponding phenoxyl radical species (ArO.) together with a CuI complex through a concerted proton-electron transfer (CPET) mechanism. Details of the reaction mechanisms are explored by DFT calculations.  相似文献   

15.
Using a pincer platform based on a bridgehead NHC donor with functional side arms, the combined effect of increased flexibility in six-membered pyrimidine-type heterocycles compared to the more often studied five-membered imidazole, and rigidity of phosphane side arms was examined. The unique features observed include: 1) the reaction of the azolium Csp2−H bond with [Ni(cod)2] affording a carbanionic ligand in [NiCl(PCsp3HP)] ( 8 ) rather than a carbene; 2) its transformation into the NHC, hydrido complex [NiH(PCNHCP)]PF6 ( 9 ) upon halide abstraction; 3) ethylene insertion into the Ni−H bond of the latter and ethyl migration to the N−C−N carbon atom of the heterocycle in [Ni(PCEtP)]PF6 ( 10 ); and 4) an unprecedented C−P bond activation transforming the P−CNHC−P pincer ligand of 8 in a C−CNHC−P pincer and a terminal phosphanido ligand in [Ni(PPh2)(CCNHCP)] ( 15 ). The data are supported by nine crystal structure determinations and theoretical calculations provided insights into the mechanisms of these transformations, which are relevant to stoichiometric and catalytic steps of general interest.  相似文献   

16.
We report the first examples of metal-promoted double geminal activation of C(sp3)−H bonds of the N−CH2−N moiety in an imidazole-type heterocycle, leading to nickel and palladium N-heterocyclic carbene complexes under mild conditions. Reaction of the new electron-rich diphosphine 1,3-bis((di-tert-butylphosphaneyl)methyl)-2,3-dihydro-1H-benzo[d]imidazole ( 1 ) with [PdCl2(cod)] occurred in a stepwise fashion, first by single C−H bond activation yielding the alkyl pincer complex [PdCl(PC HP)] ( 3 ) with two trans phosphane donors and a covalent Pd−C bond. Activation of the C−H bond of the resulting α-methine C H−M group occurred subsequently when 3 was treated with HCl to yield the NHC pincer complex [PdCl(PCNHCP)]Cl ( 2 ). Treatment of 1 with [NiBr2(dme)] also afforded a NHC pincer complex, [NiBr(PCNHCP)]Br ( 6 ), but the reactions leading to the double geminal C−H bond activation of the N−CH2−N group were too fast to allow identification or isolation of an intermediate analogous to 3 . The determination of six crystal structures, the isolation of reaction intermediates and DFT calculations provided the basis for suggesting the mechanism of the stepwise transformation of a N−CH2−N moiety in the N−CNHC−N unit of NHC pincer complexes and explain the key differences observed between the Pd and Ni chemistries.  相似文献   

17.
The complexes Cp(MeIm)IrI2 and CpMe4(MeIm)IrCl2 have been prepared and subsequently methylated to form Cp(MeIm)IrMe2 and CpMe4(MeIm)IrMe2 (Cp=η5-C5H5, CpMe45-C5HMe4, MeIm=1,3-dimethylimidazol-2-ylidene). We attempted unsuccessfully to use the dimethyl complexes to study C−D bond activation via methyl-group abstraction. Protonation with one equivalent of a weak acid, such as 2,6-dimethylpyridinium chloride, affords methane and IrIII methyl chloride complexes. 1H-NMR experiments show addition of pyridinium [BArF20] (BArF20=[B(C6F5)4]) to the dimethyl species forms [Cp(MeIm)IrMe(py)]+[BArF20] (py=pyridine) or [CpMe4(MeIm)IrMe(py)]+[BArF20] respectively, alongside methane, while use of the [BArF20] salts of more bulky 2,6-dimethylpyridinium and 2,6-di-tert-butylpyridinium gave an intractable mixture. Likewise, the generation of 16 e species [CpMe4(MeIm)IrMe]+[BArF20] or [Cp(MeIm)IrMe]+[BarF20] at low temperature using 2,6-dimethylpyridinium or 2,6-di-tert-butylpyridinium in thawing C6D6 or toluene-d8 formed an intractable mixture and did not lead to C−D bond activation. X-ray structures of several IrIII complexes show similar sterics as that found for the previously reported Cp* analogue.  相似文献   

18.
Described herein are rhenium-catalyzed [3+2] annulations of N-carbamoyl indoles with alkynes via C−H/C−N bond cleavage, which provide rapid access to fused-ring pyrroloindolone derivatives. For the first time, the weakly coordinating O-directing group was successfully employed in rhenium-catalyzed C−H activation reactions, enabled by the unique catalytic trio of Re2(CO)10, Me2Zn and ZnCl2. Mechanistic studies revealed that aminozinc species plays an important role in the reaction. Based on the mechanistic understanding, a more powerful catalytic trio of Re2(CO)10, [MeZnNPh2]2 and Zn(OTf)2 was devised and applied successfully in the [4+2] annulations of indolines and alkynes affording pyrroloquinolinone derivatives.  相似文献   

19.
Here we report the use of a base metal complex [(tBupyrpyrr2)Fe(OEt2)] ( 1 -OEt2) (tBupyrpyrr22−=3,5-tBu2-bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3−H bonds of 9,10-dihydroanthracene ( 2 a ) using 2,4,6-trimethyl phenyl azide ( 3 a ) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1 -OEt2 with control in selectivity for single C−H amination versus double C−H amination. Catalytic C−H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBupyrpyrr2)Fe{=N(2,6-Me2-4-tBu-C6H2)] ( 1 -imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1 -imido reacts with 2 a to produce the ferrous aniline adduct [(tBupyrpyrr2)Fe{NH(2,6-Me2-4-tBu-C6H2)(C14H11)}] ( 1 -aniline) in 45 % yield. Lastly, it was found that complexes 1 -imido and 1 -aniline are both competent intermediates in catalytic intermolecular C−H amination.  相似文献   

20.
Herein we report the reactions of 3,4,5,6-tetrafluoroterephthalonitrile ( 1 ) with bis(silylene) and bis(germylene) LE−EL [E=Si ( 2 ) and Ge( 3 ): L=PhC(NtBu)2)]. The reaction of LSi−SiL (L=PhC(NtBu)2) ( 2 ) with two equivalents of 1 resulted in an unprecedented oxidative addition of a C−F bond of 1 leading to disilicon(III) fluoride {L(4-C8F3N)FSi−SiF(4-C8F3N)L}( 4 ), wherein the Si−Si single bond was retained. In contrast, the reaction of LGe−GeL (L=PhC(NtBu)2) ( 3 ) with one equivalent of 1 resulted in the oxidative cleavage of Ge−Ge bond leading to L(4-C8F3N2)Ge ( 5 ) and LGeF ( 6 ). All three compounds ( 4 – 6 ) were characterized by NMR spectroscopy, EI-MS spectrometry, and elemental analysis. X-ray single-crystal structure determination of compound 4 unequivocally established that the SiIII−SiIII bond remains uncleaved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号