共查询到20条相似文献,搜索用时 46 毫秒
1.
Panagiotis Spiliopoulos Iina Solala Timo Pkknen Jani Seitsonen Bas van Bochove Jukka V. Seppl Eero Kontturi 《Macromolecular rapid communications》2020,41(15)
Despite their sustainable appeal, biomass components are currently undervalued in nanotechnology because means to control the assembly of bio‐based nanoparticles are lagging behind the synthetic counterparts. Here, micrometer‐sized particles consisting of aligned cellulose nanocrystals (CNCs) are prepared by crosslinking cellulose in cotton linter fibers that are prehydrolyzed with gaseous HCl, resulting in chemical cleavage necessary for CNC formation but retaining the morphology of the native fibers. That way, the intrinsic alignment of cellulose microfibrils within the fiber cell wall can be retained and utilized for top‐down CNC alignment. Subsequent crosslinking with citric acid cements the alignment and preserves it, following the dispersion of CNCs trapped end‐to‐end, connected, and crosslinked within the colloidally stable micrometer‐sized particles. Furthermore, thermoporosimetry and cryogenic transmission electron microscopy (Cryo TEM) shows that the particles possess mainly nanoporous (<2 nm) character in water. The approach challenges the current paradigm of predominantly bottom‐up methods for nanoparticle assembly. 相似文献
2.
Wan Hazman Danial Nur Fathanah Md Bahri Zaiton Abdul Majid 《Molecules (Basel, Switzerland)》2021,26(20)
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs–nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs–nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs–nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials. 相似文献
3.
Panda SK Hickey SG Demir HV Eychmüller A 《Angewandte Chemie (International ed. in English)》2011,50(19):4432-4436
4.
随着纳米技术的进步,纳米颗粒正在被逐步应用到法庭科学领域的手印检验之中。近年来,半导体量子点因其良好的荧光特性而备受国内外法庭科学家的推崇,但大多数半导体量子点具有毒性,且会对环境造成污染,这些问题制约了半导体量子点在法庭科学领域中的应用。与传统有机染料和金属内核的半导体量子点相比,碳量子点具有毒性低、污染小、生物相容性优异的特点,现已应用于医学、生物、化学等多个领域。本文综述了半导体量子点在手印显现中的应用,介绍了碳量子点的研究进展,并指出碳量子点显现手印是今后法庭科学领域的重要研究方向。 相似文献
5.
6.
《Chemical record (New York, N.Y.)》2018,18(5):491-505
Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. 相似文献
7.
Shilaj Roy Sabyasachi Pramanik Prasenjit Mandal Mihir Manna Satyapriya Bhandari 《化学:亚洲杂志》2019,14(21):3823-3829
Herein we report the use of a hue parameter of HSV (Hue, Saturation and Value) color space—in combination with chromaticity color coordinates—for exploring the complexation‐induced luminescence color changes, ranging from blue to green to yellow to white, from a non‐luminescent Fe‐doped ZnS quantum dot (QD). Importantly, the surface complexation reaction helped a presynthesized non‐luminescent Fe‐doped ZnS QD to glow with different luminescence colors (such as blue, cyan, green, greenish‐yellow, yellow) by virtue of the formation of various luminescent inorganic complexes (using different external organic ligands), while the simultaneous blue‐ and yellow‐emitting complex formation on the surface of non‐luminescent Fe‐doped ZnS QD led to the generation of white light emission, with a hue mean value of 85 and a chromaticity of (0.28,0.33). Furthermore, the surface complexation‐assisted incorporation of luminescence properties to a non‐luminescent QD not only overcomes their restricted luminescence‐based applications such as light‐emitting, biological and sensing applications but also bring newer avenues towards unravelling the surface chemistry between QDs and inorganic complexes and the advantage of having an inorganic complex with QD for their aforementioned useful applications. 相似文献
8.
碳点作为一种新型碳纳米材料,由于其出色的光学性能、低毒性、良好的生物相容性和易修饰性而被广泛应用于各个领域。为了满足不同领域的需求,几种用以调控碳点光学性能的方法已被提出,例如杂原子掺杂、半导体量子点掺杂、聚合物钝化和改性以及主-客体构建。其中,杂原子掺杂是通过单原子或多原子引入电子给体或受体改变其相邻碳原子的电子密度来增加荧光强度;半导体量子点也可与碳点进行复合提升电子分离效率而起到荧光增强的效果;就聚合物改性而言,聚合物不仅可以对碳点表面实施钝化和功能化,而且其固态(或固化)薄膜可以提供紧密的空间促进碳点表面的辐射跃迁起到荧光增强的效果。此外,由碳点-染料和多孔材料-碳点构成的两种主要的主-客体结构中,前者不仅对碳点的荧光发射强度有着促进的作用,更使得碳点具备了显著的红/近红外荧光发射性能,后者对固态发光碳点不仅提供了可能性和设计的灵活性,且为打开碳点新的应用领域提供了机会。本文将围绕四种碳点功能化的方法逐步展开讨论,并介绍相应碳点的光学性能、发光机理和潜在应用;论述功能化碳点的研究现状,并展望功能化碳点的研究方向。 相似文献
9.
以本征态发光的高量子产率的碳量子点为激光增益介质,Au-Ag双金属多孔纳米线为散射颗粒,在纳秒激光的脉冲下,首次实现了基于碳量子点的全色随机激光.其中,蓝、绿、红三基色的发射半峰宽分别为2.5、1.9、2.3 nm,阈值分别为0.27、0.21、0.58 MW/cm2.激光照射60 min后,随机激光体系依然能保持良好的稳定性.将蓝、绿、红三色碳量子点以一定比例混合后,在高于阈值的泵浦功率下,首次实现了基于碳量子点的白光激光,为下一代的激光显示技术提供了新的可能. 相似文献
10.
近年来, 由于聚合物点(PDs)具有良好的荧光性质和光收集能力, 受到了人们广泛的关注, 应用在生物成像和检测等领域. 然而, 目前报道的聚合物点大多数是指共轭聚合物经过组装、固定形成的, 因此聚合物点保持着形成之前的共轭聚合物的相关性质, 且具有更好的稳定性和进一步功能化的能力. 本文中我们研究的聚合物点是指从非共轭线性聚合物为原料而制备的聚合物点, 这类聚合物包括聚环氧乙烯, 多糖等. 聚合物点不仅包含使其具有荧光的碳化中心, 还具有外围的聚合物链结构. 因此, 可以拓展应用聚合物点的聚合物特性. 我们利用PDs的荧光中心和外围的聚合物链双功能性质, 详细研究了基于PDs制备功能性纳米复合材料体系. 首先, 我们原位制备了聚乙烯醇/PDs纳米复合膜材料(PDs是直接通过聚乙烯醇可控碳化而产生的). 复合材料不仅保持了PDs的荧光特性, 还保持了聚乙烯醇易加工的特性, 如可以制备成纳米复合膜材料, PDs含量可以根据需要调控: 0, 20%, 40%, 60%, 80%, 100%. 纳米复合膜材料在不同激发光下具有多颜色发光性质. 进一步的, 我们验证了PDs水溶液可以和很多其他水溶性聚合物, 石墨烯量子点或半导体量子点实现共混, 从而制备双功能性纳米复合材料. 相似文献
11.
Yubin Song Shoujun Zhu Jieren Shao Bai Yang 《Journal of polymer science. Part A, Polymer chemistry》2017,55(4):610-615
In recent years, a novel fluorescent material, carbon dots (CDs), is becoming a hot topic. Recent research works found that some types of CDs with high quantum yield are mainly composed of polymer structures or polymer/carbon hybrid structures rather than the pure carbon/graphite structure. These types of CDs, named as polymer carbon dots (PCDs) here, are drawing growing interests due to the designed hybrid structure and functional integration. Typically, PCDs are nano-sized particles possessing abundant polymer structures with low carbonization degree, prepared from the monomers or non-conjugated polymers by condensation, crosslinking, assembling, or slightly carbonization processes. In this highlight, we bring up the new concept of PCDs and discuss the relationships among non-conjugated polymer, PCDs and CDs, demonstrating that the possible fluorescence mechanism of PCDs is inferred as crosslink enhanced emission effect. Furthermore, the structure, properties, and synthetic methods of the reported typical PCDs were summarized and prospected. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 610–615 相似文献
12.
Zinc oxide@carbon quantum dots (ZnO@CQDs) nanocomposite was prepared via a facile hydrothermal method. Characterization of the obtained samples was carried out by Scanning electron microscopy-EDX(SEM–EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Photoluminescence (PL), and Fourier transformed infrared spectroscopy (FT-IR). These results revealed that we have prepared ZnO@CQDs nanocomposite successfully. Our study revealed that the antibacterial efficiency (against S.aureus and E.coli) under visible light irradiation of as prepared ZnO@CQDs nanocomposite was higher than pure ZnO nanoparticles. The ZnO@CQDs nanocomposite showed excellent antibacterial activity against Gram-negative and Gram-positive bacteria with a minimal inhibitory concentration (6–8 mg/mL) against to E.coli and S.aureus. We also tested the light response of ZnO@CQDs under UV–vis light, by calculating its band gap data, after decorated with CQDs, the band gap of the pure ZnO can significantly decreased from 2.57 eV to 2.50 eV. The ZnO decorated by CQDs can both enhance the light absorption and suppress photogenerated electron–hole's recombination which results in the enhancement of antibacterial properties. 相似文献
13.
14.
In this contribution, we report a rapid optical detection method of pathogens using Staphylococcus aureus (S. aureus) as the model analyte based on the molecular recognition of immunoglobulin with cell wall-associated Protein A (SpA). It was found that the molecular recognition of human immunoglobulin (IgG) with protein A on the cell wall of S. aureus on glass slide sensing area could result in strong surface enhanced light scattering (SELS) signals, and the SELS intensity (ΔI) increases proportionally with the concentration of S. aureus over the range of 2.5 × 105-1.0 × 108 CFU mL−1 with right angle light scattering (RALS) signals detection mode. In order to identify the solid support based molecular recognition between IgG with SpA, we also employed water-soluble CdS quantum dots (CdS-QDs) as a fluorescent marker for IgG by immobilizing the IgG onto the surfaces of CdS-QDs through covalent binding in order to generate recognition probes for SpA on the cell wall of S. aureus. Consequently, the fluorescent method also showed that the detection for pathogens with solid supports is reliable based on the molecular recognition of IgG with SpA. 相似文献
15.
采用循环伏安法(Cyclic Voltammetry,CV)在碱性条件下电解石墨棒,得到水溶性的荧光碳量子点. 通过透射电子显微镜(TEM)、拉曼光谱(Raman spectrum)、原子力显微镜(AFM)对所制备的碳量子点进行形貌及结构表征,发现该碳量子点由1~4层石墨烯片层堆积形成,粒径在19 nm左右,厚度在1 nm左右. 通过荧光光谱(PL)、紫外可见吸收光谱(UV-vis)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)对所制备的碳量子点进行性质测定,发现该碳量子点在400和525 nm处有两个荧光发射峰,且通过控制扫描周数可以调节两个发射峰的相对强度,从而调控碳量子点的荧光颜色:随着扫描周数的增加,400 nm处发射峰的相对强度逐渐减小,而525 nm处发射峰的相对强度逐渐增大,两个荧光发射峰分别与碳量子点的π-π共轭体系和含氧官能团的n-π共轭体系有关. 相似文献
16.
17.
《中国化学快报》2021,32(10):3180-3184
Increasing the charge separation and the utilization efficiency of sunlight are essential factors in a photocatalytic process. In this study, we prepared crystalline N-CQDs@W18O49 heterostructures, through the in situ growth of W18O49 nanocrystals on nitrogen-doped carbon quantum dots (N-CQDs). N-CQDs@W18O49 nanocomposites showed high activity in the photodegradation of ciprofloxacin (CIP) and methyl orange (MO). The photodegradation activity of the optimized N-CQDs@W18O49-5 sample was four times higher than that of W18O49 under ultraviolet-visible (UV–vis) light irradiation. The photodegradation activity of N-CQDs@W18O49-5 sample was two times higher than that of W18O49 under near-infrared (NIR) light irradiation. The enhanced photosensitivity of the nanocomposites was attributed to the promotion of charge separation by N-CQDs and the local surface plasmon resonance (LSPR) effect of W18O49 under NIR light irradiation. This work provides a promising approach for designing and manufacturing photocatalysts with full-spectral responsiveness and improved charge separation. 相似文献
18.
19.
How do you like your eggs? Amphiphilic carbon dots (CDs) with intense blue fluorescence have been produced from chicken eggs by treatment with plasma. They are used as effective "fluorescent carbon inks" for multicolor luminescent inkjet and silk-screen printing. 相似文献
20.
Mesoporous Silica Particles Integrated with All‐Inorganic CsPbBr3 Perovskite Quantum‐Dot Nanocomposites (MP‐PQDs) with High Stability and Wide Color Gamut Used for Backlight Display
下载免费PDF全文
![点击此处可从《Angewandte Chemie (International ed. in English)》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Hung‐Chia Wang Shin‐Ying Lin An‐Cih Tang Dr. Bheeshma Pratap Singh Hung‐Chun Tong Dr. Ching‐Yi Chen Dr. Yu‐Chun Lee Dr. Tzong‐Liang Tsai Prof. Dr. Ru‐Shi Liu 《Angewandte Chemie (International ed. in English)》2016,55(28):7924-7929
All‐inorganic CsPbX3 (X=I, Br, Cl) perovskite quantum dots (PQDs) have been investigated because of their optical properties, such as tunable wavelength, narrow band, and high quantum efficiency. These features have been used in light emitting diode (LED) devices. LED on‐chip fabrication uses mixed green and red quantum dots with silicone gel. However, the ion‐exchange effect widens the narrow emission spectrum. Quantum dots cannot be mixed because of anion exchange. We address this issue with a mesoporous PQD nanocomposite that can prevent ion exchange and increase stability. We mixed green quantum‐dot‐containing mesoporous silica nanocomposites with red PQDs, which can prevent the anion‐exchange effect and increase thermal and photo stability. We applied the new PQD‐based LEDs for backlight displays. We also used PQDs in an on‐chip LED device. Our white LED device for backlight display passed through a color filter with an NTSC value of 113 % and Rec. 2020 of 85 %. 相似文献