首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exponential proliferation of data during the information age has required the continuous exploration of novel storage paradigms, materials, and devices with increasing data density. As a step toward the ultimate limits in data density, the development of an electrically controllable single‐molecule memristive element is reported. In this device, digital information is encoded through switching between two isomer states by applying a voltage signal to the molecular junction, and the information is read out by monitoring the electrical conductance of each isomer. The two states are cycled using an electrically controllable local‐heating mechanism for the forward reaction and catalyzed by a single charge‐transfer process for the reverse switching. This single‐molecule device can be modulated in situ, is fully reversible, and does not display stochastic switching. The IV curves of this single‐molecule system also exhibit memristive character. These features suggest a new approach for the development of molecular switching systems and storage‐class memories.  相似文献   

2.
3.
4.
Polyoxometalates have been proposed in the literature as nanoelectronic components, where they could offer key advantages with their structural versatility and rich electrochemistry. Apart from a few studies on their ensemble behaviour (as monolayers or thin films), this potential remains largely unexplored. We synthesised a pyridyl-capped Anderson–Evans polyoxometalate and used it to fabricate single-molecule junctions, using the organic termini to chemically “solder” a single cluster to two nanoelectrodes. Operating the device in an electrochemical environment allowed us to probe charge transport through different oxidation states of the polyoxometalate, and we report here an efficient three-state transistor behaviour. Conductance data fits a quantum tunnelling mechanism with different charge-transport probabilities through different charge states. Our results show the promise of polyoxometalates in nanoelectronics and give an insight on their single-entity electrochemical behaviour.  相似文献   

5.
Controlling the morphology of π-conjugated polymers for organic optoelectronic devices has long been a goal in the field of materials science. Since the morphology of a polymer chain is closely intertwined with its photophysical properties, it is desirable to be able to change the arrangement of the polymers at will. We investigate the π-conjugated polymer poly(9,9-dioctylfluorene) (PFO), which can exist in three distinctly different structural phases: the α-, β-, and γ-phase. Every phase has a different chain structure and a unique photoluminescence (PL) spectrum. Due to its unique properties and the pronounced spectral structure-property relations, PFO can be used as a model system to study the morphology of π-conjugated polymers. To avoid ensemble averaging, we examine the PL spectrum of single PFO chains embedded in a non-fluorescent matrix. With single-molecule spectroscopy the structural phase of every single chain can be determined, and changes can be monitored very easily. To manipulate the morphology, solvent vapor annealing (SVA) was applied, which leads to a diffusion of the polymer chains in the matrix. The β- and γ-phases appear during the self-assembly of single α-phase PFO chains into mesoscopic aggregates. The extent of β- and γ-phase formation is directed by the solvent-swelling protocol used for aggregation. Aggregation unequivocally promotes formation of the more planar β- and γ-phases. Once these lower-energy more ordered structural phases are formed, SVA cannot return the polymer chain to the less ordered phase by aggregate swelling.  相似文献   

6.
Here, we report on a new single‐molecule‐switching concept based on the coordination‐sphere‐dependent spin state of FeII species. The perpendicular arrangement of two terpyridine (tpy) ligands within heteroleptic complexes is distorted by the applied electric field. Whereas one ligand fixes the complex in the junction, the second one exhibits an intrinsic dipole moment which senses the E field and causes the distortion of the FeII coordination sphere triggering the alteration of its spin state. A series of complexes with different dipole moments have been synthesized and their transport features were investigated via mechanically controlled break‐junctions. Statistical analyses support the hypothesized switching mechanism with increasing numbers of junctions displaying voltage‐dependent bistabilities upon increasing the FeII complexes’ intrinsic dipole moments. A constant threshold value of the E field required for switching corroborates the mechanism.  相似文献   

7.
The potential application of molecular switches as active elements in information storage has been demonstrated through numerous works. Importantly, such switching capabilities have also been reported for self‐assembled monolayers (SAMs). SAMs of electroactive molecules have recently been exploited as electrochemical switches. Typically, the state of these switches could be read out through their optical and/or magnetic response. These output reading processes are difficult to integrate into devices, and furthermore, there is a need to use liquid environments for switching the redox‐active molecular systems. In this work, both of these challenges were overcome by using an ionic gel as the electrolyte medium, which led to an unprecedented solid‐state device based on a single molecular layer. Moreover, electrochemical impedance has been successfully exploited as the output of the system.  相似文献   

8.
9.
10.
The aromatic core of an overcrowded alkene‐based molecular motor is extended with the goal of inducing isomerization with visible light instead of harmful UV light. In our design, the common naphthalene moiety in the upper half of the motor is changed to pyrene. The photochemical and thermal isomerization processes are studied in detail using DFT calculations as well as NMR and UV/VIS spectroscopy. Our studies confirm that extension of the π‐system of the upper half successfully leads to a shift of the excitation wavelength into the visible region, while retaining proper rotary function.  相似文献   

11.
A series of new tautomeric azonaphthols are synthesized and the possibilities for molecular switching are investigated using molecular spectroscopy, X‐ray analysis and density functional theory quantum chemical calculations. Two opposite effects that influence switching are studied: attaching a piperidine sidearm, and adding substituents to the phenyl ring. On the one hand, the attached piperidine moiety stabilizes the enol form leading to a controlled shift of the equilibrium upon protonation. On the other hand, the relative stability of the azonaphthol tautomers strongly depends on the effects of the substituents on the phenyl ring: electron donors tend to stabilize the enol tautomer, whereas electron acceptors lead to stabilization of the keto form. However, these effects do not shift fully the equilibrium towards either of the tautomers. Nevertheless, the effect of the substituents can be an additional tool to affect the switching between “on” and “off” states. Electron‐withdrawing substituents stabilize the keto form and impede switching to the off state, whereas electron donors stabilize the enol form. The effect of the piperidine unit is dominant overall, and with strongly electron‐withdrawing substituents at the phenyl ring, the enol form exists as a zwitterion.  相似文献   

12.
A series of Fréchet‐type dendrimers with 9‐benzyloxymethylanthracene cores were synthesized and characterized. The chiral source for the dendrimers was an (S)‐2‐methyl‐1‐butoxy group in the 3‐position of the benzene ring. Irradiation at 366 nm of a dilute benzene solution led to the formation of two diastereomers (1:1) through a quantitative intramolecular [4π+4π] cycloaddition between the central anthracene ring and the neighboring benzene ring. The process can be reversed with 254 nm UV light or heat. The benzene rings in the dendrons work as a light‐harvesting system. The optical rotation values measured for the reversible process showed fatigue resistance. Thus, a promising new type of chiroptical switch has been created that has optical rotation values as output signals.  相似文献   

13.
14.
An optically and thermally responsive boron dipyrromethene (BODIPY) dye, namely, meso‐2‐(9,10‐dihydro‐9,10‐ethanoanthracene‐11,12‐dione) (DK)‐linked, bicyclo[2.2.2]octadiene (BCOD)‐fused BODIPY ( BCOD‐DK ), was synthesized. The weakly luminous structure of BCOD‐DK can be changed quantitatively to that of the strongly fluorescent BODIPY BCOD‐Ant by optical excitation at the DK unit, which induces double decarbonylation of the DK unit to give an anthracene unit. The solvent effect on the fluorescence properties of BCOD‐DK suggests that the dramatic change in fluorescence intensity is controlled by intramolecular electron transfer from the BODIPY moiety to the meso‐DK substituent. BCOD‐DK is converted to meso‐ DK benzene‐fused BODIPY ( Benzo‐DK ) by heating at 220 °C with 64–70 nm redshift of absorption and fluorescence peaks without changing the fluorescence quantum yield of ΦF=0.08 in dichloromethane. Benzo‐DK can be converted to strongly fluorescent meso ‐ anthracene benzene‐fused BODIPY Benzo‐Ant by optical excitation. Thus, BCOD‐DK can show four different optical performances simply by irradiation and heating, and hence may be applicable for optical data storage and security data encryption.  相似文献   

15.
16.
基于席夫碱分隔配体H2vanophen(1,2-苯二胺缩邻香草醛),通过引入不同的阴离子,构筑了3个Cu-Tb基金属配合物[Cu2(vanophen)2TbCl2(MeOH)2]Cl·3MeOH(1)、[Cu2(vanophen)2TbCl2(MeOH)2](TCNQ)1.5·2MeOH(2)和[Cu2(vanophen)2Tb2(N36]·2MeOH(3)(TCNQ=7,7,8,8-四氰基对苯二醌二甲烷),并详细研究了它们的结构和磁性。除了抗衡阴离子外,配合物12具有非常相似的[CuTbCu]三核结构;其中Cu(Ⅱ)离子处于席夫碱配体中的[N2O2]配位口袋中,而Tb(Ⅲ)离子则和配体中的[O4]配位口袋中的全部或部分O原子配位。对应于一个三核基元,配合物1中的抗衡阴离子为一个Cl-离子,而配合物2中的抗衡阴离子是一个TCNQ-0.5阴离子及半个TCNQ-阴离子。配合物3是由end-end及end-on叠氮桥联2个[CuTb]单元形成的四核[CuTb]2配合物。磁性研究表明,三核配合物12均为场致的单分子磁体而配合物3为零场单分子磁体,其中配合物13的能垒分别为(11.1±0.3) cm-1和(20.2±0.3) cm-1。相比于配合物1,配合物2具有更低的能垒,这可能源于其中的阴离子自由基和三核[CuTbCu]基元之间的弱的磁相互作用。  相似文献   

17.
Well‐defined structural changes of molecular units that can be triggered by light are crucial for the development of photoactive functional materials. Herein, we report on a novel switch that has azodicarboxamide as its photo‐triggerable element. Time‐resolved UV‐pump/IR probe spectroscopy in combination with quantum‐chemical calculations shows that the azodicarboxamide functionality, in contrast to other azo‐based chromophores, does not undergo transcis photoisomerization. Instead, a photoinduced pedalo‐type motion occurs, which because of its volume‐conserving properties enables the design of functional molecular systems with controllable motion in a confined space.  相似文献   

18.
A series of photochromic derivatives based on the trans‐10b,10c‐dimethyl‐10b,10c‐dihydropyrene (DHP, “closed form”) skeleton has been synthesized and their photoisomerization leading to the corresponding cyclophanediene (CPD, “open form”) isomers has been investigated by UV/Vis and 1H NMR spectroscopies. Substitution of the DHP core with electron‐withdrawing pyridinium groups was found to have major effects on the photoisomerization efficiency, the most remarkable examples being to enhance the quantum yield of the opening reaction and to allow fast and quantitative conversions at much lower radiant energies. This effect was rationalized by theoretical calculations. We also show that the reverse reaction, that is, going from the open form to the closed form, can be electrochemically triggered by oxidation of the CPD unit and that the photo‐opening properties of pyridine‐substituted DHPs can be efficiently tuned by protonation, the system behaving as a multi‐addressable molecular switch. These multi‐addressable photochromes show promise for the development of responsive materials.  相似文献   

19.
An azamacrocyclic ligand (L) containing two anthracene (AN) fragments connected through two triethylenetetramine bridges has been synthesized, in which each of the bridges can coordinate with one metal cation. The effects of pH and metal cations (Zn2+ and Cd2+) on the emission properties of L were studied in water. Without metal cations, L does not show any emission at basic pH values. The addition of Zn2+ leads to the production of excimer emission, which is due to a static excimer formed by direct excitation of the intramolecular ground-state dimer of the bipolar AN fragments that approach each other by Zn2+ binding. In contrast, Cd2+ addition does not result in excimer emission because the Cd2+-AN pi complex, formed by donation of a pi electron of the AN fragments to the adjacent Cd2+, suppresses pi-stacking interactions of the AN fragments. The most notable feature is the appearance of excimer emission controlled by the input sequence of metal cations: Zn2+-->Cd2+ sequential addition (each one equivalent) allows excimer emission, whereas the reverse sequence (Cd2+-->Zn2+) does not. In the Zn2+-->Cd2+ sequence, Cd2+ coordination is structurally restricted by the first Zn2+ coordination with the other polyamine bridge, leading to the formation of a weak Cd2+-AN pi complex. In contrast, for the reverse sequence, the first Cd2+ coordination forms a stable Cd2+-AN pi complex, which is not weakened by sequential Zn2+ coordination, resulting in no excimer emission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号