共查询到20条相似文献,搜索用时 15 毫秒
1.
Jialong Duan Yudi Wang Xiya Yang Qunwei Tang 《Angewandte Chemie (International ed. in English)》2020,59(11):4391-4395
Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state‐of‐the‐art carbon‐based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl‐chain regulated quantum dots as hole‐conductors to reduce charge recombination. By precisely controlling alkyl‐chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re‐absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air. 相似文献
2.
Nstor Guijarro Liang Yao Florian LeFormal Rebekah A. Wells Yongpeng Liu Barbara Primera Darwich Lucie Navratilova Han‐Hee Cho Jun‐Ho Yum Kevin Sivula 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(36):12826-12834
The facile synthesis, solution‐processability, and outstanding optoelectronic properties of emerging colloidal lead halide perovskite quantum dots (LHP QDs) makes them ideal candidates for scalable and inexpensive optoelectronic applications, including photovoltaic (PV) devices. The first demonstration of integrating CsPbI3 QDs into a conventional organic solar cell (OSC) involves embedding the LHP QDs in a donor–acceptor (PTB7‐Th:PC71BM) bulk heterojunction. Optimizing the loading amount at 3 wt %, we demonstrate a power conversion efficiency of 10.8 %, which is a 35 % increase over control devices, and is a record amongst hybrid ternary OSCs. Detailed investigation into the mechanisms behind the performance enhancement shows that increased light absorption is not a factor, but that increased exciton separation in the acceptor phase and reduced recombination are responsible. 相似文献
3.
Jialong Duan Yuanyuan Zhao Yudi Wang Xiya Yang Qunwei Tang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(45):16293-16297
The all‐inorganic CsPbBr3 perovskite solar cell (PSC) is a promising solution to balance the high efficiency and poor stability of state‐of‐the‐art organic–inorganic PSCs. Setting inorganic hole‐transporting layers at the perovskite/electrode interface decreases charge carrier recombination without sacrificing superiority in air. Now, M‐substituted, p‐type inorganic Cu(Cr,M)O2 (M=Ba2+, Ca2+, or Ni2+) nanocrystals with enhanced hole‐transporting characteristics by increasing interstitial oxygen effectively extract holes from perovskite. The all‐inorganic CsPbBr3 PSC with a device structure of FTO/c‐TiO2/m‐TiO2/CsPbBr3/Cu(Cr,M)O2/carbon achieves an efficiency up to 10.18 % and it increases to 10.79 % by doping Sm3+ ions into perovskite halide, which is much higher than 7.39 % for the hole‐free device. The unencapsulated Cu(Cr,Ba)O2‐based PSC presents a remarkable stability in air in either 80 % humidity over 60 days or 80 °C conditions over 40 days or light illumination for 7 days. 相似文献
4.
Dr. Bing Wang Dr. Meng Zhang Dr. Xun Cui Zewei Wang Matthew Rager Prof. Yingkui Yang Prof. Zhigang Zou Prof. Zhong Lin Wang Prof. Zhiqun Lin 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(4):1628-1635
The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high-efficiency solar energy conversion. Now, a simple yet robust acid-treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron-transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2, thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2-coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2. Compared to pristine TiO2-based devices, the perovskite solar cells (PSCs) with acid-treated TiO2 ETL exhibit an enhanced short-circuit current and power conversion efficiency. 相似文献
5.
Zhipeng Shao Zaiwei Wang Zhipeng Li Yingping Fan Hongguang Meng Ranran Liu Yan Wang Anders Hagfeldt Guanglei Cui Shuping Pang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(17):5643-5647
An easy and scalable methylamine (MA) gas healing method was realized for inorganic cesium‐based perovskite (CsPbX3) layers by incorporating a certain amount of MAX (X=I or Br) initiators into the raw film. It was found that the excess MAX accelerated the absorption of the MA gas into the CsPbX3 film and quickly turned it into a liquid intermediate phase. Through the healing process, a highly uniform and highly crystalline CsPbX3 film with enhanced photovoltaic performance was obtained. Moreover, the chemical interactions between a series of halides and MA gas molecules were studied, and the results could offer guidance in further optimizations of the healing strategy. 相似文献
6.
<正>During the past decade, organic-inorganic hybrid perovskite solar cell(PSC) has attracted great attention in the photovoltaic field 1,2. As the third-generation solar cell, PSC in laboratory has already achieved certified power conversion efficiency(PCE) exceeding 25%. 相似文献
7.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(36):10836-10841
Herein, the assembly of CsPbBr3 QD/AlOx inorganic nanocomposites, by using atomic layer deposition (ALD) for the growth of the amorphous alumina matrix (AlOx ), is described as a novel protection scheme for such QDs. The nucleation and growth of AlOx on the QD surface was thoroughly investigated by miscellaneous techniques, which highlighted the importance of the interaction between the ALD precursors and the QD surface to uniformly coat the QDs while preserving the optoelectronic properties. These nanocomposites show exceptional stability towards exposure to air (for at least 45 days), irradiation under simulated solar spectrum conditions (for at least 8 h), and heat (up to 200 °C in air), and finally upon immersion in water. This method was extended to the assembly of CsPbBrx I3−x QD/AlOx and CsPbI3 QD/AlOx nanocomposites, which were more stable than the pristine QD films. 相似文献
8.
9.
Zhenghui Luo Fei Wu Teng Zhang Xuan Zeng Yiqun Xiao Tao Liu Cheng Zhong Xinhui Lu Linna Zhu Shihe Yang Chuluo Yang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(25):8608-8613
Electron transport materials (ETM) play an important role in the improvement of efficiency and stability for inverted perovskite solar cells (PSCs). This work reports an efficient ETM, named PDI‐C60, by the combination of perylene diimide (PDI) and fullerene. Compared to the traditional PCBM, this strategy endows PDI‐C60 with slightly shallower energy level and higher electron mobility. As a result, the device based on PDI‐C60 as electron transport layer (ETL) achieves high power conversion efficiency (PCE) of 18.6 %, which is significantly higher than those of the control devices of PCBM (16.6 %) and PDI (13.8 %). The high PCE of the PDI‐C60‐based device can be attributed to the more matching energy level with the perovskite, more efficient charge extraction, transport, and reduced recombination rate. To the best of our knowledge, the PCE of 18.6 % is the highest value in the PSCs using PDI derivatives as ETLs. Moreover, the device with PDI‐C60 as ETL exhibits better device stability due to the stronger hydrophobic properties of PDI‐C60. The strategy using the PDI/fullerene hybrid provides insights for future molecular design of the efficient ETM for the inverted PSCs. 相似文献
10.
Wu Wen Shengsheng Yu Chaoqun Zhou Prof. Hao Ma Prof. Zhongyue Zhou Chuangchuang Cao Dr. Jiuzhong Yang Minggao Xu Prof. Fei Qi Prof. Guobin Zhang Prof. Yang Pan 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(12):4903-4908
HCHO has been confirmed as an active intermediate in the methanol-to-hydrocarbon (MTH) reaction, and is critical for interpreting the mechanisms of coke formation. Here, HCHO was detected and quantified during the MTH process over HSAPO-34 and HZSM-5 by in situ synchrotron radiation photoionization mass spectrometry. Compared with conventional methods, excellent time-resolved profiles were obtained to study the formation and fate of HCHO, and other products during the induction, steady-state reaction, and deactivation periods. Similar formation trends of HCHO and methane, and their close correlation in yields suggest that they are derived from disproportionation of methanol at acidic sites. In the presence of Y2O3, the amount of HCHO changes, affecting the hydrogen-transfer processes of olefins into aromatics and aromatics into cokes. The yield of HCHO affects the aromatic-based cycle and the formation of ethylene, indicating that ethylene is mainly formed from the aromatic-based cycle. 相似文献
11.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(28):8246-8250
We successfully prepared QDs incorporated into a silica/alumina monolith (QDs‐SAM) by a simple sol–gel reaction of an Al–Si single precursor with CsPbBr3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr3 QDs from surface damages during the sol–gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr3 QDs‐SAM in powder form was easily mixed into the resins and applied as color‐converting layer with curing on blue light‐emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W−1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm. 相似文献
12.
13.
Jingru Zhang Gary Hodes Zhiwen Jin Shengzhong Liu 《Angewandte Chemie (International ed. in English)》2019,58(44):15596-15618
Recently, lead halide‐based perovskites have become one of the hottest topics in photovoltaic research because of their excellent optoelectronic properties. Among them, organic‐inorganic hybrid perovskite solar cells (PSCs) have made very rapid progress with their power conversion efficiency (PCE) now at 23.7 %. However, the intrinsically unstable nature of these materials, particularly to moisture and heat, may be a problem for their long‐term stability. Replacing the fragile organic group with more robust inorganic Cs+ cations forms the cesium lead halide system (CsPbX3, X is halide) as all‐inorganic perovskites which are much more thermally stable and often more stable to other factors. From the first report in 2015 to now, the PCE of CsPbX3‐based PSCs has abruptly increased from 2.9 % to 17.1 % with much enhanced stability. In this Review, we summarize the field up to now, propose solutions in terms of development bottlenecks, and attempt to boost further research in CsPbX3 PSCs. 相似文献
14.
Fengwan Guo Xiangyu Sun Bing Liu Zijiang Yang Jing Wei Dongsheng Xu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(51):18631-18636
Perovskite solar cells (PSCs) with power conversion efficiencies (PCEs) of 25 % mainly have SnO2 or TiO2 as electron‐transporting layers (ETLs). Now, zinc titanate (ZnTiO3, ZTO) is proposed as mesoporous ETLs owing to its weak photo‐effect, excellent carrier extraction, and transfer properties. Uniform mesoporous films were obtained by spinning coating the ZTO ink and annealed below 150 °C. Photovoltaic devices based on Cs0.05FA0.81MA0.14PbI2.55Br0.45 perovskite sandwiched between SnO2‐mesorporous ZTO electrode and Spiro‐OMeTAD layer achieved the PCE of 20.5 %. The PSCs retained more than 95 % of their original efficiency after 100 days lifetime test without being encapsulated. Additionally, the PSCs retained over 95 % of the initial performance when subjected at the maximum power point voltage for 120 h under AM 1.5 G illumination (100 mW cm?2), demonstrating superior working stability. The application of ZTO provides a better choice for ETLs of PSCs. 相似文献
15.
16.
Masashi Ozaki Ai Shimazaki Mina Jung Yumi Nakaike Naoki Maruyama Shinya Yakumaru Alwani Imanah Rafieh Takahiro Sasamori Norihiro Tokitoh Piyasiri Ekanayake Yasujiro Murata Richard Murdey Atsushi Wakamiya 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(28):9489-9493
A high‐purity methylammonium lead iodide complex with intercalated dimethylformamide (DMF) molecules, CH3NH3PbI3?DMF, is introduced as an effective precursor material for fabricating high‐quality solution‐processed perovskite layers. Spin‐coated films of the solvent‐intercalated complex dissolved in pure dimethyl sulfoxide (DMSO) yielded thick, dense perovskite layers after thermal annealing. The low volatility of the pure DMSO solvent extended the allowable time for low‐speed spin programs and considerably relaxed the precision needed for the antisolvent addition step. An optimized, reliable fabrication method was devised to take advantage of this extended process window and resulted in highly consistent performance of perovskite solar cell devices, with up to 19.8 % power‐conversion efficiency (PCE). The optimized method was also used to fabricate a 22.0 cm2, eight‐cell module with 14.2 % PCE (active area) and 8.64 V output (1.08 V/cell). 相似文献
17.
The interface defects and nickel vacancies of the NiOx lead to interface charge recombination,which limits its application in perovskite solar cells.Here,graphdiyne oxide(GDYO)was added to NiOx as an inorganic hole transporting material.It is found that the average carrier lifetime declined from 29.2 ns to 5.4 ns and the recombination resistance increased significantly after the GDYO adding determined by the time-resolved photoluminescence and electrochemical impedance spectroscopy analysis.We further demonstrated that the GDYO adding to NiOx effectively improved the charge extraction,accelerated the charge transportation and suppressed the charge recombination.Consequently,the optimized NiOx(GDYO)-based cell showed superior performance with a higher fill factor(81.99%)and improved stability with respect to the reference device.This method provides a new method for property regulation of NiOx in inverted planar MAPbl3 perovskite solar cells. 相似文献
18.
Recently, enormous efforts have been made to develop the efficient, lead (Pb) free and stable perovskite solar cells (PSCs). In this regards, various strategies were applied and the optoelectronic properties of various Pb free perovskites such as (CH3NH3)3Sb2I9, (CH3NH3)3Bi2I9, Cs3Sb2I9, Cs3Bi2I9, CH3NH3SnI3 and CH3NH3GeI3 etc have been investigated. However, the photovoltaic performance of the developed PSCs was still low and presence of organic moieties in common hole‐transport materials (HTMs) shows poor stability against moisture and heat. Herein, we have investigated the optoelectronic properties of all inorganic Pb free perovskites (Cs3Sb2I9=1 and Cs3Bi2I9=2) and employed novel strategies (dissolution‐recrystallization) to prepare the efficient Pb free PSCs. The band gaps of the 1 and 2 were found to be 2.2 eV and 2.0 eV, respectively. The developed PSCs with 1 and 2 exhibited the power conversion efficiency of 0.68% and 1.087%, respectively. 相似文献
19.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(41):12832-12836
The alloying behavior between FAPbI3 and CsSnI3 perovskites is studied carefully for the first time, which has led to the realization of single‐phase hybrid perovskites of (FAPbI3)1−x (CsSnI3)x (0<x <1) compositions with anomalous bandgaps. (FAPbI3)1−x (CsSnI3)x perovskites exhibit stable, homogenous composition/microstructure at the nanoscale, as confirmed by microscopic characterization. The ideal bandgap of 1.3 eV for single‐junction solar cell operation is achieved in the rationally‐tailored (FAPbI3)0.7(CsSnI3)0.3‐composition perovskite. Solar cells based on this new perovskite show power conversion efficiency up to 14.6 %. 相似文献