共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Coordination Chemistry》2012,65(1):115-123
Three new reduced amino-acid Schiff-base complexes, [Zn(HL)2] · H2O (1), [Ni(HL)2] · H2O (2), and [Cd(HL)2] · H2O (3), where H2L is a reduced Schiff base derived from condensation of N-(2-hydroxybenzaldehyde) and L-histidine, have been synthesized and characterized by elemental analysis, UV-Vis absorption spectra and single crystal X-ray diffraction. Complexes 1–3 are isostructural. All metal centers are six-coordinate with O2N4 donor sets in slightly distorted octahedra. Unlike its Schiff-base counterpart, the deprotonated monoanionic ligand HL? has a more flexible backbone and two HL? are tridentate to one metal. Moreover, the binding interactions of these complexes with calf thymus DNA (CT-DNA) have been investigated by UV-Vis spectra and fluorescence quenching, which show that the complexes bind in an intercalative mode. 相似文献
2.
《Journal of Coordination Chemistry》2012,65(6):929-942
Mononuclear and trinuclear zinc(II) complexes (1 and 2) with tridentate NNO Schiff-base ligands (HL1?=?N-2-pyridiylmethylidene-4-chloro-2-hydroxy-phenylamine, HL2?=?N-2-pyridiylmethylidene-2-hydroxy-5-chloro-phenylamine) have been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis. The binding properties of zinc(II) complexes with calf thymus DNA (CT-DNA) and HSA were investigated by UV–visible, fluorescence, and circular dichroism spectra. The zinc(II) complexes bind significantly to CT-DNA by intercalation and bind to protein HSA through a static quenching mechanism. The in vitro cytotoxicity of the complexes on human tumor cells lines was assessed by 3-(4,5-dimathylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Hoechst 33258 staining experiments. 相似文献
3.
A new category of dinucleating macrocyclic Schiff base ligands with ring sizes from 34- to 52-membered have been synthesised employing metal template procedures involving the reaction of o-phenylenediamine with a series of α,ω-bis(3′-hydroxy-4′-formylphenyloxy)alkanes in the presence of calcium(II), barium(II) or manganese(II). The latter cations act as ‘transient’ templates for formation of the corresponding metal-free Schiff base macrocyclic ligands, H4Ln (where n signifies the number of carbons in each linking bis-alkoxy chain); the macrocycles corresponding to n = 4, 6 and 8 were isolated and characterised while, for n = 1, in which single methylene groups acts as the bridges between salicyl moieties, the cyclic product was used directly for preparation of its dinuclear complex, [Zn2L1], without prior isolation. Evidence for the templating role of barium in the preparation of H4L6 and H4L8 was obtained by isolation of the corresponding species of type H4Ln·2Ba(ClO4)2 (n = 6 or 8) as ‘intermediates’ before generation of the respective metal-free macrocycles. Reaction of zinc(II) acetate with the free macrocycles in methanol yielded complexes of type [Zn2Ln] in all cases. A related non-cyclic ligand, H2L0 and its corresponding mononuclear complex, [ZnL0]·H2O, were also synthesised and its spectral properties compared with those of the macrocyclic derivatives. The elemental analyses, 1H NMR, IR, UV–Vis and MS spectra of the respective zinc complexes in each case were in accord with the formation of the expected 2:2 condensation product. The results of DFT calculations to probe aspects of the electronic and structural natures of both H2L1 and H4L4 are briefly presented. 相似文献
4.
《Journal of Coordination Chemistry》2012,65(1):147-155
Cu(II) complexes of three bis(pyrrol-2-yl-methyleneamine) ligands were synthesized and characterized by elemental analyses, mass spectra, and IR spectra. X-ray diffraction analysis shows that [CuL3]2 is a dinuclear complex with an extremely distorted square-planar geometry. Furthermore, the antioxidant activities of the compounds have been investigated. The electrochemical properties of the Cu(II) complexes have also been studied by cyclic voltammetry. The Cu(II) complexes show similar superoxide dismutase (SOD) activity compared with that of the native Cu, Zn-SOD. 相似文献
5.
《Journal of Coordination Chemistry》2012,65(22):3659-3665
Some Schiff-base complexes of UO2(II) ion derived from 2-hydroxyacetophenone and aliphatic diamines under reflux conditions have been synthesized. The resulting ligands and their complexes have been characterized by elemental analyses (C, H, N), infrared, 1H NMR, 13C NMR and mass spectra. In these efficient reactions, Schiff-base complexes with important applications in analytical and organic chemistry are prepared. 相似文献
6.
《Journal of Coordination Chemistry》2012,65(16):2709-2718
Reaction of the N-tosyl-1,2-diaminopropane or N-tosyl-1,2-diaminobenzene with salicylaldehyde forms two new asymmetric sulfonamide Schiff bases, N-[2-(2-hydroxybenzylideneamino)propyl]-4-methylbenzenesulfonamide (H2L1 ) and N-[2-(2-hydroxybenzylideneamino)phenyl]-4-methylbenzenesulfonamide (H2L2 ). Two new complexes [CuL x (H2O)] (x = 1 for 1, x = 2 for 2) constructed from H2L x have been prepared and characterized via X-ray single-crystal diffraction, elemental analysis, FT-IR, UV-Vis, TGA, quantum chemical calculations, and photoluminescence measurements. Weak C–H ··· π, hydrogen bonds, π–π, and Cu ··· O weak interactions lead to 3-D supramolecular architecture, 1, and 1-D double chain, 2. 相似文献
7.
A series of Mn(II) macrocyclic Schiff-base complexes [MnLnCl]+ (n = 1–4) have been prepared via the Mn(II) templated [1+1] cyclocondensation of 2,6-diacetylpyridine or 2,6-pyridinedicarbaldehyde with the symmetrical 1,4-bis(3-aminopropyl)piperazine or the novel asymmetrical N,N′(2-aminoethyl)(3-aminopropyl)piperazine linear amines containing piperazine moiety. The complexes have been characterized by elemental analyses, IR, FAB-MS, magnetic studies and conductivity measurements. The crystal structure of [MnL2(CH3OH)Cl](ClO4) and [MnL4Cl](PF6) complexes have also been determined showing the metal ion in a N4OCl pentagonal bipyramidal or N4Cl highly distorted octahedral geometry, respectively. 相似文献
8.
Mokgolela M. Mogorosi John R. Moss Selwyn F. Mapolie Koop Lammertsma 《Journal of organometallic chemistry》2011,696(23):3585-3592
New N-functionalised 2-phosphinobenzaldimino (P^N) ligands bearing 3-picolyl, furfuryl, thiophene-2-methyl, thiophene-2-ethyl, and benzyl groups have been prepared in good yield. The 2-phosphinobenzaldimino ligands were reacted with PdCl2(COD) to give the corresponding metal complexes of the type Pd(L)Cl2 (L = 2-phosphinobenzaldimino (P^N) ligand). All compounds were fully characterized using spectroscopic and analytical techniques, including 1H, 13C, and 31P NMR and IR spectroscopies, mass spectrometry and elemental analysis. Selected neutral palladium complexes were evaluated as catalyst precursors in ethylene oligomerisation reactions, after activation with a co-catalyst (MMAO, EtAlCl2, or Et2AlCl). 相似文献
9.
《Journal of Coordination Chemistry》2012,65(14):2422-2436
AbstractThree new manganese and copper complexes, [Mn(ONO-(S)L1)2] (1), [Cu(ONO-(R)L2)]4·2CH3OH (2), and [Mn3(ONO-(S)L3)4(OAc)4(H2O)2] (3), {[H2L1 = (S)-2-phenyl-2-(2-hydroxy-5-chlorobenzylideneamino)ethane-1-ol], H2L2 = (R)-2-(2-hydroxy-5-chlorobenzylideneamino)butane-1-ol] and H2L3 = (S)-2-phenyl-2-(2-hydroxy-3-methoxybenzylideneamino)ethane-1-ol]}, have been synthesized. The crystal structures of 1–3 were determined through single-crystal X-ray diffraction. The structure of mononuclear 1 shows a six-coordinate octahedral geometry around the manganese ion. Complex 2 is a five-coordinate tetranuclear copper complex with the central Cu atoms adopting distorted square pyramidal geometry. Complex 3 shows a trinuclear structure with the six-coordinate Mn ions surrounded by four L3 ligands and acetate ions. The in vitro cytotoxicity screening revealed that the 1–3 had substantial cytotoxicity against three cancer cell lines (HepG2, MDA-MB-231, and A549), even higher than that of cisplatin. Inspiringly, 2 derived from (R)-Schiff base ligand H2L2 was more potent against MDA-MB-231 cells. Interaction of 1–3 with calf-thymus DNA (CT-DNA) has been investigated using UV-vis, viscosity and thermal denaturation experiments. It was found that 1 binds with DNA through intercalation while 2 and 3 interact with DNA probably through groove-binding and electrostatic mode. In addition, the capability of the complexes to bind with bovine serum albumin was monitored using some spectral techniques. The metal ions, chiral and nuclearity have significant influences on the properties of the title compounds. 相似文献
10.
Ammavasai Gubendran Gujuluva Gangatharan Vinoth Kumar Mookkandi Palsamy Kesavan Gurusamy Rajagopal Periakaruppan Athappan Jegathalaprathaban Rajesh 《应用有机金属化学》2018,32(3)
New anthracene based Schiff base ligands L 1 and H( L 2 ), their Cu(II) complexes [Cu( L 1 )Cl2] ( 1 ) and [Cu( L 2 )Cl] ( 2 ) , (where L 1 = N1,N2‐bis(anthracene‐9‐methylene)benzene‐1,2‐diamine, L 2 = (2Z,4E)‐4‐(2‐(anthracen‐9‐ylmethyleneamino)phenylimino)pent‐2‐en‐2‐ol) have been prepared and characterized by elemental analysis, NMR, FAB‐mass, EPR, FT‐IR, UV–Vis and cyclic voltammetry. The electronic structures and geometrical parameters of complexes 1 and 2 were analyzed by the theoretical B3LYP/DFT method. The interaction of these complexes 1 and 2 with CT‐DNA has been explored by using absorption, cyclic voltammetric and CD spectral studies. From the electronic absorption spectral studies, it was found that the DNA binding constants of complexes 1 and 2 are 8.7 × 103 and 7.0 × 104 M?1, respectively. From electrochemical studies, the ratio of DNA binding constants K+/K2+ for 2 has been estimated to be >1. The high binding constant values, K+/K2+ ratios more than unity and positive shift of voltammetric E1/2 value on titration with DNA for complex 2 suggest that they bind more avidly with DNA than complex 1 . The inability to affect the conformational changes of DNA in the CD spectrum is the definite evidences of electrostatic binding by the complex 1 . It can be assumed that it is the bulky anthracene unit which sterically inhibits these complexes 1 and 2 from intercalation and thereby remains in the groove or electrostatic. The complex 2 hardly cleaves supercoiled pUC18 plasmid DNA in the presence of hydrogen peroxide. The results suggest that complex 2 bind to DNA through minor groove binding. 相似文献
11.
Behrouz Shaabani Ali Akbar Khandar Nahid Ramazani Michel Fleck Haedeh Mobaiyen 《Journal of Coordination Chemistry》2017,70(4):696-708
A tridentate NNO donor hydrazine Schiff base, HL, was obtained from condensation of pyridine 2-carbaldehyde and 4-hydroxy benzohydrazide. HL and azide ligands with Cr(III), Mn(II) and Fe(III) have been used to synthesize [Cr(L)(N3)(OCH3)]2 (1), [Mn(HL)2(N3)2] (2), and [Fe(L)(N3)(OCH3)]2·H2O (3). HL is quite diverse in its chelating ability and can be a neutral or monoanionic ligand as a tridentate unit. In this paper, we report structures showing different denticities of the ligand having different charges. The ligand 1–3 was characterized by elemental analysis, FT-IR, and UV–vis spectral studies and solid-state structures were determined by single-crystal X-ray diffraction analysis, revealing that 1 and 3 are binuclear, while 2 is mononuclear. The efficiencies of the ligand and the three complexes were evaluated for antimicrobial activity; MIC data revealed that HL 1–3 are not strongly active in comparison to standard drugs. 相似文献
12.
Shyam Sundar Mondal Namita Jaiswal Partha Sarathi Bera Ranjay K. Tiwari Jogendra Nath Behera Nripen Chanda Subhas Ghosal Tanmoy Kumar Saha 《应用有机金属化学》2021,35(1)
A series of copper (II) ( 1 and 3 ) and cobalt (II/III) ( 2 , 4 and 5 ) complexes comprising different imino‐phenolate ligands DCH , DTH and DBH 2 (where DCH = 2,4‐dichloro‐6‐((mesitylimino)methyl)phenol, DTH = 2,4‐di‐tert‐butyl‐6‐((mesitylimino)methyl) phenol and DBH 2 = 2,4‐dibromo‐6‐((mesitylimino)methyl)phenol) have been prepared with excellent yield and high purity. By utilizing different spectroscopic tools such as UV–visible, electrospray ionization (ESI)‐mass, Fourier‐transform infrared (FTIR) spectrometry and elemental analysis, the prepared complexes ( 1 – 5 ) were thoroughly characterized. The molecular structure of the synthesized complexes was ascertained by using single‐crystal X‐ray diffraction studies (SCXRDs). The experiment reveals that Complexes 1 – 5 bind to calf thymus DNA (CT‐DNA) through non‐intercalative way with good interacting abilities. However, 1 – 5 are excellent quenchers of the fluorescence intensity of bovine serum albumin (BSA) following the static pathway. Additionally, they had shown remarkable cytotoxic potential against MCF‐7 (mammary gland adenocarcinoma) and A549 (lung adenocarcinoma) cell lines. The IC50 values associated with these complexes were much lower than the conventional drug cisplatin. Apoptosis‐induced cell death was confirmed from the DNA fragmentation studies and Hoechst 33342 staining. The 2′,7′‐dichlorofluorescein diacetate (DCFDA) assay indicates that the complex mediated reactive oxygen species (ROS) generation is accountable for governing the apoptosis mechanism via oxidative cell distress. Apart from these studies, by carrying out density functional theory (DFT) method, highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap calculations and optimized structures of the synthesized complexes were accomplished. 相似文献
13.
An aminonaphthoquinone ligand, L, and its metal complexes of general formula [MLCl2] {M = Co(II), Ni(II), Cu(II) and Zn(II)} have been synthesized and characterized by analytical and spectral techniques. Tetrahedral geometry has been assigned to Ni(II) and Zn(II) complexes and square planar geometry to Co(II) and Cu(II) complexes on the basis of electronic spectral and magnetic susceptibility data. The binding of complexes with bovine serum albumin (BSA) is relatively stronger than that of free ligand and alters the conformation of the protein molecule. Interaction of these complexes with CT-DNA has been investigated using UV-Vis and fluorescence quenching experiments, which show that the complexes bind strongly to DNA through intercalative mode of binding (Kapp 105 M?1). Molecular docking studies reiterate the mode of binding of these compounds with DNA, proposed by spectral studies. The ligand and its complexes cleave plasmid DNA pUC18 to nicked (Form II) and linear (Form III) forms in the presence of H2O2 oxidant. The in vitro cytotoxicity screening shows that Cu(II) complex is more potent against MCF-7 cells and Zn(II) complex exhibits marked cytotoxicity against A-549 cells equal to that of cisplatin. Cell imaging studies suggested apoptosis mode of cell death in these two chosen cell lines. 相似文献
14.
N. Raman R. Jeyamurugan S. Sudharsan K. Karuppasamy L. Mitu 《Arabian Journal of Chemistry》2013,6(2):235-247
The paper presents the synthesis of complex combinations of Cu(II) and Zn(II) with Schiff base obtained by the condensation reaction of 4-aminoantipyrine with benzaldehyde and 2-amino-3-methyl-butanoicacid. Structural features of synthesized compounds were determined by analytical and spectral techniques. Binding of synthesized complexes with calf thymus DNA (CT DNA) was studied by spectroscopic methods and viscosity measurements. Experimental results indicated the ability of the complexes to form adducts with DNA and to distort the double helix by changing the base stacking. Oxidative DNA cleavage activities of the complexes were studied with supercoiled (SC) pUC19 DNA using gel electrophoresis. The in vitro antimicrobial screening effects of the investigated compounds were monitored by the disk diffusion method. The synthesized Schiff base complexes exhibited higher antimicrobial activity than the respective free Schiff base. The in vitro cytotoxicity of synthesized complexes against Ehrlich ascites carcinoma (EAC) tumor model was investigated using trypan blue dye exclusion assay. The complexes possessed significant cytotoxic activity. 相似文献
15.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2. 相似文献
16.
Thangavel Thirunavukkarasu Hazel A. Sparkes Karuppannan Natarajan V.G. Gnanasoundari 《应用有机金属化学》2018,32(8)
Two new Pd(II) complexes of N′‐(4‐(diethylamino)‐2‐hydroxybenzylidene)furan‐2‐carbohydrazide were synthesized and characterized using various spectral methods. The structure of one of the complexes was determined using single‐crystal X‐ray diffraction. DNA and protein binding affinities of the synthesized compounds were examined using UV–visible and fluorescence titration method. In addition, the in vitro cytotoxicity of the compounds was evaluated against A549 (lung cancer) and MCF7 (breast cancer) cell lines using the MTT assay method. 相似文献
17.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation. 相似文献
18.
L 《Polyhedron》2007,26(18):5513-5518
The Schiff base ligand, 1,2-diaminophenyl-N,N′-bis-(2-pyridinecarboxaldimine), (L) has been synthesized by the reaction of o-phenylenediamine and 2-pyridinecarboxaldehyde, and a series of mononuclear complexes of the type [ML(NO3)2] [M = Co(II), Ni(II), Cu(II) and Zn(II)] has also been synthesized. The formation of the Schiff base ligand (L) and its complexes have been envisaged from IR, 1H and 13C NMR studies. The absorption band observed in the electronic spectra and magnetic moment values confirm an octahedral environment around the metal ion. The molar conductivity measurements confirm the non-ionic character of these complexes. Fluorescence and UV–Vis absorption studies performed on the Cu(II) complex revealed a significant binding ability to DNA. 相似文献
19.
《应用有机金属化学》2017,31(2)
A novel Schiff base, namely Z ‐3‐((2‐((E )‐(2‐hydroxynaphthyl)methylene)amino)‐5‐nitrophenylimino)‐1,3‐dihydroindin‐2‐one, was synthesized from the condensation of 2‐hydroxy‐1‐naphthaldehyde and isatin with 4‐nitro‐o ‐phenylenediamine. It was structurally characterized on the basis of 1H NMR, 13C NMR and infrared spectra and elemental analyses. In addition, Ni(II) and Cu(II) complexes of the Schiff base ligand were prepared. The nature of bonding and the stereochemistry of the investigated complexes were elucidated using several techniques, including elemental analysis (C, H, N), Fourier transform infrared and electronic spectroscopies and molar conductivity. The thermal behaviours of the complexes were studied and kinetic–thermodynamic parameters were determined using the Coats–Redfern method. Density functional theory calculations at the B3LYP/6‐311G++ (d, p) level of theory were carried out to explain the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using LANL2DZ basis set. The total energy of highest occupied and lowest unoccupied molecular orbitals, Mullikan atomic charges, dipole moment and orientation are discussed. Moreover, the interaction of the metal complexes with calf thymus DNA (CT‐DNA) was explored using electronic spectra, viscosity measurements and gel electrophoresis. The experimental evidence indicated that the two complexes could strongly bind to CT‐DNA via an intercalation mechanism. The intrinsic binding constants of the investigated Ni(II) and Cu(II) complexes with CT‐DNA were 1.02 × 106 and 2.15 × 106 M−1, respectively, which are higher than that of the standard ethidium bromide. Furthermore, the bio‐efficacy of the ligand and its complexes was examined in vitro against the growth of bacteria and fungi to evaluate the antimicrobial potential. Based on the obtained results, the prepared complexes have promise for use as drugs. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand. 相似文献