首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Herein we report the synthesis, structure solution, and catalytic properties of PST‐24, a novel channel‐based medium‐pore zeolite. This zeolite was synthesized via the excess fluoride approach. Electron diffraction shows that its structure is built by composite cas‐zigzag (cas‐zz) building chains, which are connected by double 5‐ring (d5r) columns. While the cas‐zz building chains are ordered in the PST‐24 framework, the d5r columns adopt one of two possible arrangements; the two adjacent d5r columns are either at the same height or at different heights, denoted arrangements S and D, which can be regarded as open and closed valves that connect the channels, respectively. A framework with arrangement D only has a 2D 10‐ring channel system, whereas that with arrangement S only contains 3D channels. In actual PST‐24 crystals, the open and closed valves are almost randomly dispersed to yield a zeolite framework where the channel dimensionality varies locally from 2D to 3D.  相似文献   

2.
    
Zeolite EU‐12, the framework structure of which has remained unsolved during the past 30 years, is synthesized at a specific SiO2/Al2O3 ratio using choline as an organic structure‐directing agent, with both Na+ and Rb+ ions present. Synchrotron powder X‐ray diffraction and Rietveld analyses reveal that the EU‐12 structure has a two‐dimensional 8‐ring channel system. Among the two distinct 8‐ring (4.6×2.8 and 5.0×2.7 Å) channels along c axis, the smaller one interconnects with the sinusoidal 8‐ring (4.8×3.3 Å) channel along a axis. The other large one is simply linked up with the sinusoidal channel by sharing 8‐rings (4.8×2.6 Å) in the ac plane. The proton form of EU‐12 was found to show a considerably higher ethene selectivity in the low‐temperature dehydration of ethanol than H‐mordenite, the best catalyst for this reaction.  相似文献   

3.
4.
    
The synthesis of the high‐silica zeolite SSZ‐61 using a particularly bulky polycyclic structure‐directing agent and the subsequent elucidation of its unusual framework structure with extra‐large dumbbell‐shaped pore openings are described. By using information derived from a variety of X‐ray powder diffraction and electron microscopy techniques, the complex framework structure, with 20 Si atoms in the asymmetric unit, could be determined and the full structure refined. The Si atoms at the waist of the dumbbell are only three‐connected and are bonded to terminal O atoms pointing into the channel. Unlike the six previously reported extra‐large‐pore zeolites, SSZ‐61 contains no heteroatoms in the framework and can be calcined easily. This, coupled with the possibility of inserting a catalytically active center in the channel between the terminal O atoms in place of H+, afford SSZ‐61 intriguing potential for catalytic applications.  相似文献   

5.
    
Zeolites have been widely used in industry owing to their ordered micropores and stable frameworks. The pore sizes and shapes are the key parameters that affect the selectivity and efficiency in their applications in catalysis, sorption, and separation. Zeolites with pores defined by 10 and 12 TO4 tetrahedra are often used for various catalytic processes. To optimize the performance of zeolites, it is extremely desirable to fine‐tune the pore sizes/shapes. The first germanosilicate zeolite with a three‐dimensional 11×11×12‐ring channel system, PKU‐16 (PKU, Peking University) is presented. Nanosized PKU‐16 was structurally characterized by the new three‐dimensional rotation electron diffraction (RED) technique. PKU‐16 is structurally related to the zeolite β polymorph C (BEC, 12×12×12‐ring channels) by rotating half of the four‐rings in double mtw units.  相似文献   

6.
7.
8.
9.
10.
11.
12.
    
The development of new methods to analyze and determine molecular structures parallels the ability to accelerate synthetic research. For many decades, single‐crystal analysis by X‐ray diffraction (SXRD) has been the definitive tool for structural analysis at the atomic level; the drawback, however, is that a suitable single crystal of the analyte needs to be grown. The recent innovation of the crystalline sponge (CS) method allows the microanalysis of compounds simply soaked in a readily prepared CS crystal, thus circumventing the need to screen crystallization conditions while also using only a trace amount of the sample. In this context, electron diffraction for the structure determination of small molecules is discussed as potentially the next big development in this field.  相似文献   

13.
14.
Electron diffraction offers advantages over X‐ray based methods for crystal structure determination because it can be applied to sub‐micron sized crystallites, and picogram quantities of material. For molecular organic species, however, crystal structure determination with electron diffraction is hindered by rapid crystal deterioration in the electron beam, limiting the amount of diffraction data that can be collected, and by the effect of dynamical scattering on reflection intensities. Automated electron diffraction tomography provides one possible solution. We demonstrate here, however, an alternative approach in which a set of putative crystal structures of the compound of interest is generated by crystal structure prediction methods and electron diffraction is used to determine which of these putative structures is experimentally observed. This approach enables the advantages of electron diffraction to be exploited, while avoiding the need to obtain large amounts of diffraction data or accurate reflection intensities. We demonstrate the application of the methodology to the pharmaceutical compounds paracetamol, scyllo‐inositol and theophylline.  相似文献   

15.
16.
  总被引:2,自引:0,他引:2  
  相似文献   

17.
    
IDM‐1 is a new silica zeolite with an ordered and well‐defined framework constructed by alternating pentasil layers and interrupted layers, giving rise to an intersecting system of straight medium pores and undulating extra‐large lobed pores. This unique structure was solved by rotation electron diffraction and refined against synchrotron powder X‐ray diffraction data. Despite the presence of both Si(OSi)3(OH) and Si(OSi)2(OH)2 sites, this new zeolite presents high thermal stability, withstanding calcination even to 1000 °C. The location of defects at specific sites of the structure results in alternating hydrophobic SiO2 and hydrophilic SiO(2?x)(OH)2x intracrystalline regions. This peculiar combination of intersecting medium and extra‐large pores and alternating regions of different chemical character may provide this zeolite with unique catalytic properties.  相似文献   

18.
    
IDM-1 is a new silica zeolite with an ordered and well-defined framework constructed by alternating pentasil layers and interrupted layers, giving rise to an intersecting system of straight medium pores and undulating extra-large lobed pores. This unique structure was solved by rotation electron diffraction and refined against synchrotron powder X-ray diffraction data. Despite the presence of both Si(OSi)3(OH) and Si(OSi)2(OH)2 sites, this new zeolite presents high thermal stability, withstanding calcination even to 1000 °C. The location of defects at specific sites of the structure results in alternating hydrophobic SiO2 and hydrophilic SiO(2−x)(OH)2x intracrystalline regions. This peculiar combination of intersecting medium and extra-large pores and alternating regions of different chemical character may provide this zeolite with unique catalytic properties.  相似文献   

19.
Layered double hydroxides (LDHs) are versatile materials used for intercalating bioactive molecules in the fields of pharmaceuticals, nutraceuticals and cosmetics, with the purpose of protecting them from degradation, enhancing their water solubility to increase bioavailability and improving their pharmacokinetic properties and formulation stability. Moreover, LDHs are used in various technological applications to improve stability and processability. The crystal chemistry of hydrotalcite‐like compounds was investigated by X‐ray powder diffraction (XRPD), automated electron diffraction tomography (ADT) and thermogravimetric analysis (TGA)‐GC‐MS to shed light on the mechanisms involved in ion exchange and absorption of contaminants, mainly carbonate anions. For the first time, ADT allowed a structural model of LDH_NO3 to be obtained from experiment, shedding light on the conformation of nitrate inside LDH and on the loss of crystallinity due to the layer morphology. The ADT analysis of a hybrid LDH sample (LDH_EUS) clearly revealed an increase in defectivity in this material. XRPD demonstrated that the presence of carbonate can influence the intercalation of organic molecules into LDH, since CO3‐contaminated samples tend to adopt d spacings that are approximate multiples of the d spacing of LDH_CO3. TGA‐GC‐MS allowed intercalated and surface‐ adsorbed organic molecules to be distinguished and quantified, the presence and amount of carbonate to be confirmed, especially at low concentrations (<2 wt %), and the different types and strengths of adsorption to be classified with respect to the temperature of elimination.  相似文献   

20.
A new approach to crystal structure determination, combining crystal structure prediction and transmission electron microscopy, was used to identify a potential new crystal phase of the pharmaceutical compound theophylline. The crystal structure was determined despite the new polymorph occurring as a minor component in a mixture with Form II of theophylline, at a concentration below the limits of detection of analytical methods routinely used for pharmaceutical characterisation. Detection and characterisation of crystallites of this new form were achieved with transmission electron microscopy, exploiting the combination of high magnification imaging and electron diffraction measurements. A plausible crystal structure was identified by indexing experimental electron‐diffraction patterns from a single crystallite of the new polymorph against a reference set of putative crystal structures of theophylline generated by global lattice energy minimisation calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号