首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of the O?O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O?O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O?O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O?O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O?O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting.  相似文献   

2.
Recent efforts to model the reactivity of iron oxygenases have led to the generation of nonheme FeIII(OOH) and FeIV(O) intermediates from FeII complexes and O2 but using different cofactors. This diversity emphasizes the rich chemistry of nonheme Fe(ii) complexes with dioxygen. We report an original mechanistic study of the reaction of [(TPEN)FeII]2+ with O2 carried out by cyclic voltammetry. From this FeII precursor, reaction intermediates such as [(TPEN)FeIV(O)]2+, [(TPEN)FeIII(OOH)]2+ and [(TPEN)FeIII(OO)]+ have been chemically generated in high yield, and characterized electrochemically. These electrochemical data have been used to analyse and perform simulation of the cyclic voltammograms of [(TPEN)FeII]2+ in the presence of O2. Thus, several important mechanistic informations on this reaction have been obtained. An unfavourable chemical equilibrium between O2 and the FeII complex occurs that leads to the FeIII-peroxo complex upon reduction, similarly to heme enzymes such as P450. However, unlike in heme systems, further reduction of this latter intermediate does not result in O–O bond cleavage.  相似文献   

3.
4.
A series of [{(terpy)(bpy)Ru}(μ‐O){Ru(bpy)(terpy)}]n+ ( [RuORu]n+ , terpy=2,2′;6′,2′′‐terpyridine, bpy=2,2′‐bipyridine) was systematically synthesized and characterized in three distinct redox states (n=3, 4, and 5 for RuII,III2 , RuIII,III2 , and RuIII,IV2 , respectively). The crystal structures of [RuORu]n+ (n=3, 4, 5) in all three redox states were successfully determined. X‐ray crystallography showed that the Ru? O distances and the Ru‐O‐Ru angles are mainly regulated by the oxidation states of the ruthenium centers. X‐ray crystallography and ESR spectra clearly revealed the detailed electronic structures of two mixed‐valence complexes, [RuIIIORuIV]5+ and [RuIIORuIII]3+ , in which each unpaired electron is completely delocalized across the oxo‐bridged dinuclear core. These findings allow us to understand the systematic changes in structure and electronic state that accompany the changes in the redox state.  相似文献   

5.
Three new amine/pyridine FeII complexes bearing pentadentate ligand with one, two or three electron enriched 4-methoxy-3,5-dimethylpyridine were used as catalysts for the oxidation of small organic molecules by hydrogen peroxide. The distribution of products formed suggests that these ligands are not enough electron donating to promote the O−O heterolytic cleavage of the oxidant in order to generate selective FeV(O) species. Using acetic acid in the reaction mixtures results in a significant increase of the efficiency of these catalytic systems. Our investigations show that the use of AcOH leads to the protonation/dissociation of a pyridyl moiety and the formation of (N4)FeII(OAc)(OH) species. These complexes readily react with excess hydrogen peroxide to yield (N4)FeIII(OAc)(OOH) intermediates. These latter intermediates are proposed to evolve into (N4)FeIV(OAc)(O), which are more efficient than the usual (N4)FeIV(O) and (N5)FeIV(O).  相似文献   

6.
Oxoiron(IV) units are often implicated as intermediates in the catalytic cycles of non‐heme iron oxygenases and oxidases. The most reactive synthetic analogues of these intermediates are supported by tetradentate tripodal ligands with N‐methylbenzimidazole or quinoline donors, but their instability precludes structural characterization. Herein we report crystal structures of two [FeIV(O)(L)]2+ complexes supported by pentadentate ligands incorporating these heterocycles, which show longer average Fe–N distances than the complex with only pyridine donors. These longer distances correlate linearly with log k2′ values for O‐ and H‐atom transfer rates, suggesting that weakening the ligand field increases the electrophilicity of the Fe=O center. The sterically bulkier quinoline donors are also found to tilt the Fe=O unit away from a linear N‐Fe=O arrangement by 10°.  相似文献   

7.
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two‐color valence‐to‐core X‐ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2‐activating, radical‐initiating manganese–iron heterodinuclear cofactor in a class I‐c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two‐color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIVFeIV and MnIVFeIII states of the enzyme to be assigned as MnIV(μ‐O)2FeIV and MnIV(μ‐O)(μ‐OH)FeIII, respectively.  相似文献   

8.
Mechanism of substrate oxidations with hydrogen peroxide in the presence of a highly reactive, biomimetic, iron aminopyridine complex, [FeII(bpmen)(CH3CN)2][ClO4]2 ( 1 ; bpmen=N,N'‐dimethyl‐N,N'‐bis(2‐pyridylmethyl)ethane‐1,2‐diamine), is elucidated. Complex 1 has been shown to be an excellent catalyst for epoxidation and functional‐group‐directed aromatic hydroxylation using H2O2, although its mechanism of action remains largely unknown. 1 , 2 Efficient intermolecular hydroxylation of unfunctionalized benzene and substituted benzenes with H2O2 in the presence of 1 is found in the present work. Detailed mechanistic studies of the formation of iron(III)–phenolate products are reported. We have identified, generated in high yield, and experimentally characterized the key FeIII(OOH) intermediate (λmax=560 nm, rhombic EPR signal with g=2.21, 2.14, 1.96) formed by 1 and H2O2. Stopped‐flow kinetic studies showed that FeIII(OOH) does not directly hydroxylate the aromatic rings, but undergoes rate‐limiting self‐decomposition producing transient reactive oxidant. The formation of the reactive species is facilitated by acid‐assisted cleavage of the O? O bond in the iron–hydroperoxide intermediate. Acid‐assisted benzene hydroxylation with 1 and a mechanistic probe, 2‐Methyl‐1‐phenyl‐2‐propyl hydroperoxide (MPPH), correlates with O? O bond heterolysis. Independently generated FeIV?O species, which may originate from O? O bond homolysis in FeIII(OOH), proved to be inactive toward aromatic substrates. The reactive oxidant derived from 1 exchanges its oxygen atom with water and electrophilically attacks the aromatic ring (giving rise to an inverse H/D kinetic isotope effect of 0.8). These results have revealed a detailed experimental mechanistic picture of the oxidation reactions catalyzed by 1 , based on direct characterization of the intermediates and products, and kinetic analysis of the individual reaction steps. Our detailed understanding of the mechanism of this reaction revealed both similarities and differences between synthetic and enzymatic aromatic hydroxylation reactions.  相似文献   

9.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

10.
The potential of the redox couple FeIV=O / FeIII–O is of interest for the reactivity of the high-valent nonheme iron oxidants in enzymes and bioinspired small molecule systems but, unfortunately, experimentally it so far is very poorly described. Discussed are three computational methods that are used in combination with available experimental data derived from titrations of FeIV=O species with ferrocene derivatives in dry acetonitrile, and from spectroelectrochemical titrations of FeIII–OH complexes in wet acetonitrile, i.e. describing the FeIV=O / FeIII–OH couple – both data sets are known to have some ambiguities. First, a DFT-based method is used to compute the values of 14 FeIV=O / FeIII–O couples with an error margin of around 110 mV. A subset of four species of the original data set is used to evaluate a DLPNO-CCSD(T) based approach, and another subset of complexes, where the spectroelectrochemically determined FeIV=O / FeIII–OH potentials are also known, are used for a Bordwell-Polanyi analysis, which also yield pKa values. It is shown that the three approaches lead to a consistent picture but due to possible ambiguities with the experimental data, it currently is not possible to fully evaluate the accuracy of the used approaches.  相似文献   

11.
The development of iron catalysts for carbon–heteroatom bond formation, which has attracted strong interest in the context of green chemistry and nitrene transfer, has emerged as the most promising way to versatile amine synthetic processes. A diiron system was previously developed that proved efficient in catalytic sulfimidations and aziridinations thanks to an FeIIIFeIV active species. To deal with more demanding benzylic and aliphatic substrates, the catalyst was found to activate itself to a FeIIIFeIVL. active species able to catalyze aliphatic amination. Extensive DFT calculations show that this activation event drastically enhances the electron affinity of the active species to match the substrates requirements. Overall this process consists in a redox self‐adaptation of the catalyst to the substrate needs.  相似文献   

12.
In order to test the reliability of DFT methods for calculating electronic structures of [FeIVO] system, detailed calculations of [FeIVO](OH)2 models were performed for several low‐energy states using multiconfiguration quasidegenerate perturbation theory (MCQDPT) as well as DFT‐based methods. The minimum energy crossing points (MECP) of 5A1/5B2 and 3B2/5B2 were investigated based on Lagrange–Newton approach. The results show that M06 functional produce energy gaps close to those of MCQDPT results. Another topic in this article is that the electron configurations of [FeIVO](OH)2 models strongly depend on the type of surface ligand used, and the two lowest states of these can facile transition each other by the MECP. The practicability of M06 method in locating the MECP is validated by the results of MCQDPT which demonstrate the two‐state reactivity (TSR) can be studied with proper DFT method. These inspections provide the basis for further TSR study of larger [FeIVO] system. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

14.
We demonstrate that the devised incorporation of an alkylamine group into the second coordination sphere of an FeII complex allows to switch its reactivity with H2O2 from the usual formation of FeIII species towards the selective generation of an FeIV‐oxo intermediate. The FeIV‐oxo species was characterized by UV/Vis absorption and Mössbauer spectroscopy. Variable‐temperature kinetic analyses point towards a mechanism in which the heterolytic cleavage of the O?O bond is triggered by a proton transfer from the proximal to the distal oxygen atom in the FeII‐H2O2 complex with the assistance of the pendant amine. DFT studies reveal that this heterolytic cleavage is actually initiated by an homolytic O?O cleavage immediately followed by a proton‐coupled electron transfer (PCET) that leads to the formation of the FeIV‐oxo and release of water through a concerted mechanism.  相似文献   

15.
We reported herein the development of heterobimetallic NiFe molecular platform to understand NiFe synergistic effect in water oxidation catalysis. Compared to homonuclear bimetallic compounds (NiNi and FeFe), NiFe complex possesses more remarkable catalytic water oxidation performance. Mechanistic studies suggest that this remarkable difference is attributed to the fact that NiFe synergy can effectively promote O−O bond formation. The generated NiIII(μ-O)FeIV=O is the key intermediate and O−O bond was formed via intramolecular oxyl-oxo coupling between bridged O radical and terminal FeIV=O moiety.  相似文献   

16.
Kinetic and mechanistic studies on the formation of an oxoiron(IV) porphyrin cation radical bearing a thiolate group as proximal ligand are reported. The SR complex, a functional enzyme mimic of P450, was oxidized in peroxo‐shunt reactions under different experimental conditions with variation of solvent, temperature, and identity and excess of oxidant in the presence of different organic substrates. Through the application of a low‐temperature rapid‐scan stopped‐flow technique, the reactive intermediates in the SR catalytic cycle, such as the initially formed SR acylperoxoiron(III) complex and the SR high‐valent iron(IV) porphyrin cation radical complex [( SR .+)FeIV?O], were successfully identified and kinetically characterized. The oxidation of the SR complex under catalytic conditions provided direct spectroscopic information on the reactivity of [( SR .+)FeIV?O] towards the oxidation of selected organic substrates. Because the catalytically active species is a synthetic oxoiron(IV) porphyrin cation radical bearing a thiolate proximal group, the effect of the strong electron donor ligand on the formation and reactivity/stability of the SR high‐valent iron species is addressed and discussed in the light of the reactivity pattern observed in substrate oxygenation reactions catalyzed by native P450 enzyme systems.  相似文献   

17.
18.
The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complex of UIV with H2O, OH, and F as axial ligands was studied by using UV/Vis spectrophotometry, ESI-MS, NMR spectroscopy, X-ray crystallography, and electrochemistry. The UIV–DOTA complex with either water or fluoride as axial ligands was found to be inert to oxidation by molecular oxygen, whereas the complex with hydroxide as an axial ligand slowly hydrolyzed and was oxidized by dioxygen to a diuranate precipitate. The combined data set acquired shows that, although axial substitution of fluoride and hydroxide ligands instead of water does not seem to significantly change the aqueous DOTA complex structure, it has an important effect on the electronic configuration of the complex. The UIV/UIII redox couple was found to be quasi-reversible for the complex with both axially bonded H2O and hydroxide, but irreversible for the complex with axially bonded fluoride. Intriguingly, binding of the axial fluoride renders the irreversible one-electron UV/UIV oxidation of the [UIV(DOTA)(H2O)] complex quasi-reversible, which suggests the formation of the short-lived pentavalent form of the complex, an aqueous non-uranyl chelated UV cation.  相似文献   

19.
Cytochrome c peroxidase (CCP) contains a five-coordinate heme active site. The reduction potential for the ferric to ferrous couple in CCP is anomalously low and pH dependent (Eo?=?~?180?mV vs. S.H.E. at pH 7). The contribution of the protein environment to the tuning of the redox potential of this couple is evaluated using site-directed mutants of several amino acid residues in the environment of the heme. These include proximal pocket mutation of residues Asp-235, Trp-191, Phe-202, and His-175, distal pocket mutation of residues Trp-51, His-52, and Arg-48; and a heme edge mutation of Ala-147. Where unknown, the structural changes resulting from the amino acid substitution have been studied by X-ray crystallography. In most cases, ostensibly polar or charged residues are replaced by large hydrophobic groups or alternatively by Ala or Gly. These latter have been shown to generate large, solvent-filled cavities. Reduction potentials are measured as a function of pH by spectroelectrochemistry. Starting with the X-ray-derived structures of CCP and the mutants, or with predicted structures generated by molecular dynamics (MD), predictions of redox potential changes are modeled using the protein dipoles Langevin dipoles (PDLD) method. These calculations serve to model an electrostatic assessment of the redox potential change with simplified assumptions about heme iron chemistry, with the balance of the experimentally observed shifts in redox potential being thence attributed to changes in the ligand set and heme coordination chemistry, and/or other changes in the structure not directly evident in the X-ray structures (e.g., ionization states, specific roles played by solvent species, or conformationally flexible portions of the protein). Agreement between theory and experiment is good for all mutant proteins with the exception of the mutation Arg 48 to Ala, and His 52 to Ala. In the former case, the influence of phosphate buffer is adduced to account for the discrepancy, with evidence for phosphate binding in the distal pocket, and measurements made in a bis?Ctris propane/2-(N-morpholino)ethanesulfonic acid buffer system agree well with theory. For the latter case, an unknown structural element relevant to His-52 and/or solvent influence in the mutant akin to anion binding in the distal pocket (though lacking proof that it is, and in this case lacking a phosphate effect) manifests in this mutant. The use of exogenous (sixth) ligands in dissecting the contributions to control of redox potential is also explored as a pathway for model building.  相似文献   

20.
The syn and anti isomers of [FeIV(O)(TMC)]2+ (TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that the syn isomer [FeIV(Osyn)(TMC)(NCMe)]2+ ( 2 ) converts into its anti form [FeIV(Oanti)(TMC)(NCMe)]2+ ( 1 ) in MeCN, an isomerization facilitated by water and monitored most readily by 1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to 2 , the nascent 1 becomes 18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water molecule trans to the oxo atom in 2 with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of 1 . The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号