首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We report a new molecular‐design principle for creating double‐gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol?1 in DMSO‐d6 solution (DFT prediction for a model compound in the vacuum: 90–100 kJ mol?1). Due to the restricted rotation, the amphiphiles feature “double” atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co‐organize into ‐type bicontinuous cubic liquid‐crystalline mesophases through nanosegregation of the ionic and non‐ionic parts. Considering the intrinsic characteristic of ‐type bicontinuous cubic structures that they are composed of intertwined right‐ and left‐handed single gyroids, we propose that the simultaneous presence of both R‐ and S‐atropisomers is an important contributor to the formation of double‐gyroid structures.  相似文献   

2.
Decreasing the energy loss is one of the most feasible ways to improve the efficiencies of organic photovoltaic (OPV) cells. Recent studies have suggested that non-radiative energy loss ( ) is the dominant factor that hinders further improvements in state-of-the-art OPV cells. However, there is no rational molecular design strategy for OPV materials with suppressed . Herein, taking molecular surface electrostatic potential (ESP) as a quantitative parameter, we establish a general relationship between chemical structure and intermolecular interactions. The results reveal that increasing the ESP difference between donor and acceptor will enhance the intermolecular interaction. In the OPV cells, the enhanced intermolecular interaction will increase the charge-transfer (CT) state ratio in its hybridization with the local exciton state to facilitate charge generation, but simultaneously result in a larger . These results suggest that finely tuning the ESP of OPV materials is a feasible method to further improve the efficiencies of OPV cells.  相似文献   

3.
Reported here is an entirely new application of experimental electron density (EED) in the study of magnetic anisotropy of single-molecule magnets (SMMs). Among those SMMs based on one single transition metal, tetrahedral CoII-complexes are prominent, and their large zero-field splitting arises exclusively from coupling between the d and dxy orbitals. Using very low temperature single-crystal synchrotron X-ray diffraction data, an accurate electron density (ED) was obtained for a prototypical SMM, and the experimental d-orbital populations were used to quantify the dxy-d coupling, which simultaneously provides the composition of the ground-state Kramers doublet wave function. Based on this experimentally determined wave function, an energy barrier for magnetic relaxation in the range 193–268 cm−1 was calculated, and is in full accordance with the previously published value of 230 cm−1 obtained from near-infrared spectroscopy. These results provide the first clear and direct link between ED and molecular magnetic properties.  相似文献   

4.
Selective synthesis of higher oxygenates (linear α‐alcohols and α‐aldehydes, C OH) from syngas is highly attractive but remains challenging owing to the low C OH selectivity and low catalytic stability. Herein we introduce a multifunctional catalyst composed of CoMn and CuZnAlZr oxides that dramatically increased the oxygenates selectivity to 58.1 wt %, where more than 92.0 wt % of the produced oxygenates are C OH. Notably, the total selectivity to value‐added chemicals including oxygenates and olefins reached 80.6 wt % at CO conversion of 29.0 % with high stability. The appropriate component proximity can effectively suppress the formation of the undesired C1 products, and the selectively propulsion of reaction network by synergetic effect of different components contributes to the enhanced selectivity to higher oxygenates. This work provides an alternative strategy for the rational design of new catalysts for direct conversion of syngas into higher oxygenates with co‐production of olefins.  相似文献   

5.
Selective C –C couplings are powerful strategies for the rapid and programmable construction of bi- or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd-catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C−BPin, C−SiMe3, C−I, C−Br, C−Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C−Ge with aryl diazonium salts. Contrary to previous light-/gold-catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron-rich, electron-poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron-poor Ar–N2+ salts are readily activated by gold under blue-light irradiation, there is a competing dissociative deactivation pathway for excited electron-rich Ar–N2+, which requires an alternative photo-redox approach to enable productive couplings.  相似文献   

6.
The first single‐diamond cubic phase in a liquid crystal is reported. This skeletal structure with the space group is formed by self‐assembly of bolaamphiphiles with swallow‐tailed lateral chains. It consists of bundles of π‐conjugated p‐terphenyl rods fused into an infinite network by hydrogen‐bonded spheres at tetrahedral four‐way junctions. We also present a quantitative model relating molecular architecture to the space‐filling requirements of six possible bicontinuous cubic phases, that is, the single‐ and double‐network versions of gyroid, diamond, and “plumber′s nightmare”.  相似文献   

7.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N−1, and pyroelectric coefficient of p≈25.8 μC m−2 K−1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

8.
Photoabsorption spectra of clusters, N=5–9, have been calculated using a diatomics-in-molecules like electronic structure model and a path-integral Monte Carlo sampling method. A qualitative change in the calculated spectra has been observed at N=9, which has been interpreted in terms of a structural transformation in the clusters consisting in a transition from trimer-like ionic cores observed for N≤7 to dimer-like ionic cores prevailing in through an intermediate state (comparable abundances of both types of ionic cores) observed in . The calculated spectra have been thoroughly compared with an earlier calculation on , , and reported from our group and data available for the same cluster sizes from an experiment.  相似文献   

9.
In the present work, the kinetic mechanism of the reaction is studied. The rate constants were determined using the Master Equation Solver for Multi-Energy Well Reactions (MESMER). The master equation modeling was also employed to examine the pressure dependence for each pathway involved. The theoretical analysis shows that the overall rate coefficient is practically independent of pressure up to 100 Torr for the temperature range 125-500 K. The unusual dependence of the overall rate constant with temperature was fit with the d-Arrhenius expression , where cm3molecule−1s−1, , and  kJ·mol−1, for 125⩽ T ⩽ 500 K. The thermal rate constant results are in relatively good agreement with other theoretical studies.  相似文献   

10.
Mechanistic variation in catalysis through substituent-based redox tuning is well established. Fluorination of TCNQ (TCNQ=tetracyanoquinodimethane) provides ~850 mV variation in the redox potentials of the and (n=0, 2, 4) processes. With , catalysis of the kinetically very slow ferrocyanide-thiosulfate redox reaction in aqueous solution occurs via a mechanism in which the catalyst is reduced to when reacting with which is oxidised to . Subsequently, reacts with to form and reform the catalyst, in another thermodynamically favoured process. An analogous mechanism applies with as a catalyst. In contrast, since the reaction of with is thermodynamically unfavourable, an alternative mechanism is required to explain the catalytic activity observed in this non-fluorinated system. Here, upon addition of , reduction of to occurs with concomitant oxidation of to , which then acts as the catalyst for oxidation. Thermodynamic data explain the observed differences in the catalytic mechanisms. (n=0, 4) also act as catalysts for the ferricyanide-thiosulfate reaction in aqueous solution. The present study shows that homogeneous pathways are available following addition of these dissolved materials. Previously, these (n=0, 4) coordination polymers have been regarded as insoluble in water and proposed as heterogeneous catalysts for the ferricyanide-thiosulfate reaction. Details and mechanistic differences were established using UV-visible spectrophotometry and cyclic voltammetry.  相似文献   

11.
N-Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N-type polymers with high crystallinity and order are generally used for high-conductivity ( ) organic conductors. Few n-type polymers with only short-range lamellar stacking for high-conductivity materials have been reported. Here, we describe an n-type short-range lamellar-stacked all-polymer thermoelectric system with highest of 78 S−1, power factor (PF) of 163 μW m−1 K−2, and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to , and atypical decreased thermal conductivity ( ) with increased doping ratio contribute to the promising performance.  相似文献   

12.
Multi-mode vibronic coupling in the , , and electronic states of Cyanogen radical cation (C N ) is investigated with the aid of ab initio quantum chemistry and first principles quantum dynamics methods. The electronic degenerate states of Π symmetry of C N undergo Renner-Teller (RT) splitting along degenerate vibrational modes of π symmetry. The RT split components form symmetry allowed conical intersections with those from nearby RT split states or with non-degenerate electronic states of Σ symmetry. A parameterized vibronic Hamiltonian is constructed using standard vibronic coupling theory in a diabatic electronic basis and symmetry rules. The parameters of the Hamiltonian are derived from ab initio calculated adiabatic electronic energies. The vibronic spectrum is calculated, assigned and compared with the available experimental data. The impact of various electronic coupling on the vibronic structure of the spectrum is discussed.  相似文献   

13.
Intricate behaviour of one-electron potentials from the Euler equation for electron density and corresponding gradient force fields in crystals was studied. Channels of locally enhanced kinetic potential and corresponding saddle Lagrange points were found between chemically bonded atoms. Superposition of electrostatic and kinetic potentials and electron density allowed partitioning any molecules and crystals into atomic - and potential-based -basins; -basins explicitly account for the electron exchange effect, which is missed for -ones. Phenomena of interatomic charge transfer and related electron exchange were explained in terms of space gaps between zero-flux surfaces of - and -basins. The gap between - and -basins represents the charge transfer, while the gap between - and -basins is a real-space manifestation of sharing the transferred electrons caused by the static exchange and kinetic effects as a response against the electron transfer. The regularity describing relative positions of -, -, and - basin boundaries between interacting atoms was proposed. The position of -boundary between - and -ones within an electron occupier atom determines the extent of transferred electron sharing. The stronger an H⋅⋅⋅O hydrogen bond is, the deeper hydrogen atom's -basin penetrates oxygen atom's -basin, while for covalent bonds a -boundary closely approaches a -one indicating almost complete sharing of the transferred electrons. In the case of ionic bonds, the same region corresponds to electron pairing within the -basin of an electron occupier atom.  相似文献   

14.
Let be the molecular graph of the linear [n] phenylene with n hexagons and n − 1 squares, and let be the graph obtained by attaching four-membered rings to the terminal hexagons of . In this article, the normalized Laplacian spectrum of consisting of the eigenvalues of two symmetric tridiagonal matrices of order 3n is determined. An explicit closed-form formula of the multiplicative degree-Kirchhoff index (respectively the number of spanning trees) of is derived. Similarly, explicit closed-form formulas of the multiplicative degree-Kirchhoff index and the number of spanning trees of are obtained. It is interesting to see that the multiplicative degree-Kirchhoff index of (respectively ) is approximately to one half of its Gutman index.  相似文献   

15.
Dr. Luís P. Viegas 《Chemphyschem》2023,24(16):e202300259
Experimental work on the OH-initiated oxidation reactions of fluorotelomer aldehydes (FTALs) strongly suggests that the respective rate coefficients do not depend on the size of the CxF2x+1 fluoroalkyl chain. FTALs hence represent a challenging test to our multiconformer transition state theory (MC-TST) protocol based on constrained transition state randomization (CTSR), since the calculated rate coefficients should not show significant variations with increasing values of . In this work we apply the MC-TST/CTSR protocol to the cases and calculate both rate coefficients at 298.15 K with a value of cm3 molecule−1 s−1, practically coincident with the recommended experimental value of kexp= cm3 molecule−1 s−1. We also show that the use of tunneling corrections based on improved semiclassical TST is critical in obtaining Arrhenius-Kooij curves with a correct behavior at lower temperatures.  相似文献   

16.
Spin Hamiltonian parameters of a pentanuclear Os Ni cyanometallate complex are derived from ab initio wave function based calculations, namely valence-type configuration interaction calculations with a complete active space including spin-orbit interaction (CASOCI) in a single-step procedure. While fits of experimental data performed so far could reproduce the data but the resulting parameters were not satisfactory, the parameters derived in the present work reproduce experimental data and at the same time have a reasonable size. The one-centre parameters (local matrices and single-ion zero field splitting tensors) are within an expected range, the anisotropic exchange parameters obtained in this work for an Os−Ni pair are not exceedingly large but determine the low-T part of the experimental χT curve. Exchange interactions (both isotropic and anisotropic) obtained from CASOCI have to be scaled by a factor of 2.5 to obtain agreement with experiment, a known deficiency of such types of calculation. After scaling the parameters, the isotropic Os−Ni exchange coupling constant is cm−1 and the D parameter of the (nearly axial) anisotropic Os−Ni exchange is −1, so anisotropic exchange is larger in absolute size than isotropic exchange. The negative value of the isotropic J (indicating antiferromagnetic coupling) seemingly contradicts the large-temperature behaviour of the temperature dependent susceptibility curve, but this is caused by the negative g value of the Os centres. This negative g value is a universal feature of a pseudo-octahedral coordination with configuration and strong spin-orbit interaction. Knowing the size of these exchange interactions is important because Os(CN) is a versatile building block for the synthesis of / magnetic materials.  相似文献   

17.
The starting electrophoretic motion of a porous, uniformly charged, spherical particle, which models a solvent-permeable and ion-penetrable polyelectrolyte coil or floc of nanoparticles, in an arbitrary electrolyte solution due to the sudden application of an electric field is studied for the first time. The unsteady Stokes/Brinkman equations with the electric force term governing the fluid velocity fields are solved by means of the Laplace transform. An analytical formula for the electrophoretic mobility of the porous sphere is obtained as a function of the dimensionless parameters , , , and , where a is the radius of the particle, κ is the Debye screening parameter, λ is the reciprocal of the square root of the fluid permeability in the particle, ρp and ρ are the mass densities of the particle and fluid, respectively, ν is the kinematic viscosity of the fluid, and t is the time. The electrophoretic mobility normalized by its steady-state value increases monotonically with increases in and , but decreases monotonically with an increase in , keeping the other parameters unchanged. In general, a porous particle with a high fluid permeability trails behind an identical porous particle with a lower permeability and a corresponding hard particle in the growth of the normalized electrophoretic mobility The normalized electrophoretic acceleration of the porous sphere decreases monotonically with an increase in the time and increases with an increase in from zero at .  相似文献   

18.
The Jarzynski equality is one of the most widely celebrated and scrutinized nonequilibrium work theorems, relating free energy to the external work performed in nonequilibrium transitions. In practice, the required ensemble average of the Boltzmann weights of infinite nonequilibrium transitions is estimated as a finite sample average, resulting in the so-called Jarzynski estimator, . Alternatively, the second-order approximation of the Jarzynski equality, though seldom invoked, is exact for Gaussian distributions and gives rise to the Fluctuation-Dissipation estimator . Here we derive the parametric maximum-likelihood estimator (MLE) of the free energy considering unidirectional work distributions belonging to Gaussian or Gamma families, and compare this estimator to . We further consider bidirectional work distributions belonging to the same families, and compare the corresponding bidirectional to the Bennett acceptance ratio () estimator. We show that, for Gaussian unidirectional work distributions, is in fact the parametric MLE of the free energy, and as such, the most efficient estimator for this statistical family. We observe that and perform better than and , for unidirectional and bidirectional distributions, respectively. These results illustrate that the characterization of the underlying work distribution permits an optimal use of the Jarzynski equality. © 2018 Wiley Periodicals, Inc.  相似文献   

19.
We present results of quantum structure calculations aimed at demonstrating the possible existence of dipole-bound states (DBS) for the anion , a species already detected in the Interstellar medium (ISM). The positive demonstration of DBS existence using ab initio studies is an important step toward elucidating possible pathways for the formation of the more tightly bound valence bound states (VBS) in environments where free electrons from starlight ionization processes are known to be available to interact with the radical partner of the title molecule. Our current calculations show that such excited DBS states can exist in , in agreement with what we had previously found for the smallercyanopolyyne in the series: the anion. This system has a very weakly bound anion with binding energies of about 3 and 9 cm−1 for the and DBS, respectively.  相似文献   

20.
Actinide +VI complexes ( = , and ) with dipicolinic acid derivatives were synthesized and characterized by powder XRD, SQUID magnetometry and NMR spectroscopy. In addition, and complexes were described by first principles CAS based and two-component spin-restricted DFT methods. The analysis of the 1H paramagnetic NMR chemical shifts for all protons of the ligands according to the X-rays structures shows that the Fermi contact contribution is negligible in agreement with spin density determined by unrestricted DFT. The magnetic susceptibility tensor is determined by combining SQUID, pNMR shifts and Evans’ method. The SO-RASPT2 results fit well the experimental magnetic susceptibility and pNMR chemical shifts. The role of the counterions in the solid phase is pointed out; their presence impacts the magnetic properties of the complex. The temperature dependence of the pNMR chemical shifts has a strong contribution, contrarily to Bleaney's theory for lanthanide complexes. The fitting of the temperature dependence of the pNMR chemical shifts and SQUID magnetic susceptibility by a two-Kramers-doublet model for the complex and a non-Kramers-doublet model for the complex allows for the experimental evaluation of energy gaps and magnetic moments of the paramagnetic center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号