首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Red phosphorus is a promising photocatalyst with wide visible‐light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]‐oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.2 and 17.5 μmol h?1 from pure water under simulated solar light and visible light irradiation, respectively. It was theoretically and experimentally indicated that the strong electronic coupling between PCN and [001]‐oriented HP nanorods gave rise to the enhanced visible light absorption and the greatly accelerated photoinduced electron–hole separation and transfer, which benefited the photocatalytic HER performance.  相似文献   

2.
Solar light harvesting by photocatalytic H2 evolution from water could solve the problem of greenhouse gas emission from fossil fuels with alternative clean energy. However, the development of more efficient and robust catalytic systems remains a great challenge for the technological use on a large scale. Here we report the synthesis of a sol–gel prepared mesoporous graphitic carbon nitride (sg‐CN) combined with nickel phosphide (Ni2P) which acts as a superior co‐catalyst for efficient photocatalytic H2 evolution by visible light. This integrated system shows a much higher catalytic activity than the physical mixture of Ni2P and sg‐CN or metallic nickel on sg‐CN under similar conditions. Time‐resolved photoluminescence and electron paramagnetic resonance (EPR) spectroscopic studies revealed that the enhanced carrier transfer at the Ni2P–sg‐CN heterojunction is the prime source for improved activity.  相似文献   

3.
Conjugated carbon nitride (CN) is an emerging and promising semiconductor photocatalyst for water photolysis owing to its unique properties. However, the traditional thermally induced polymerization of N‐containing precursors typically produces melon‐based CN solids with amorphous or semi‐crystalline structures with only moderate photocatalytic performance. Many strategies have been developed to prepare crystalline CNs (CCNs), such as high‐temperature and high‐pressure routes, ionothermal synthesis, and microwave‐assisted synthesis. In this Minireview, we summarize the progress that has been made in the synthesis of CCNs and their application in photocatalytic water splitting reactions. Three kinds of CCNs are mainly discussed according to their polymeric subunits. Challenges associated with CCNs and their future development are also included.  相似文献   

4.
The charge transfer between hydrogen evolution photocatalysts (HEPs) and oxygen evolution photocatalysts (OEPs) is the rate‐determining step that controls the overall performance of a Z‐scheme water‐splitting system. Here, we carefully design reduced graphene oxide (RGO) nanosheets for use as solid‐state mediators to accelerate the charge carrier transfer between HEPs (e.g., polymeric carbon nitride (PCN)) and OEPs (e.g., Fe2O3), thus achieving efficient overall water splitting. The important role of RGO could also be further proven in other PCN‐based Z‐systems (BiVO4/RGO/PCN and WO3/RGO/PCN), illustrating the universality of this strategy.  相似文献   

5.
Constructing heterojunctions between two semiconductors with matched band structure is an effective strategy to acquire high-efficiency photocatalysts. The S-scheme heterojunction system has shown great potential in facilitating separation and transfer of photogenerated carriers, as well as acquiring strong photoredox ability. Herein, a 0D/2D S-Scheme heterojunction material involving CeO2 quantum dots and polymeric carbon nitride (CeO2/PCN) is designed and constructed by in situ wet chemistry with subsequent heat treatment. This S-scheme heterojunction material shows high-efficiency photocatalytic sterilization rate (88.1 %) towards Staphylococcus aureus (S. aureus) under visible-light irradiation (λ≥420 nm), which is 2.7 and 8.2 times that of pure CeO2 (32.2 %) and PCN (10.7 %), respectively. Strong evidence of S-scheme charge transfer path is verified by theoretical calculations, in situ irradiated X-ray photoelectron spectroscopy, and electron paramagnetic resonance.  相似文献   

6.
Photocatalytic reactions, including hydrogen/oxygen generation, water splitting and hydrogen peroxide production, are regarded as a renewable and promising method to harvest and use solar energy. The key to achieving this goal is to explore efficient photocatalysts with high productivity. Recently, two‐dimensional (2D) polymeric carbon nitride nanosheets were reported as efficient photocatalysts toward various products because of their outstanding properties, such as high specific surface area, more reactive sites, the quantum effect in thickness and unique electronic properties. This minireview attempts to overview recent advances in the preparation, structure and properties of crystalline and amorphous carbon nitride nanosheets, and their applications in photocatalytic hydrogen/oxygen evolution, water splitting and hydrogen peroxide production. We also thoroughly discuss the effect of defects, dopants and composites on the photocatalytic efficiency of these carbon nitride nanosheets. Finally, we outlook the ongoing opportunities and future challenges for 2D carbon nitride nanosheets in the field of photocatalysis.  相似文献   

7.
以草酸为氧源,二聚氰胺和尿素为原料,采用两步热聚合方式合成氧掺杂氮化碳纳米片催化剂(CNO)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、X射线光电子能谱分析(XPS)、荧光光谱(PL)及电化学测试等技术对催化剂进行结构表征分析。在可见光照射下通过分解水制氢反应对CNO的光催化还原性能进行评价。结果表明,草酸中的O元素通过取代氮化碳三嗪环结构中N原子直接键合到sp~2杂化碳上,形成O掺杂CNO。经O掺杂改性后的氮化碳具有良好的层状堆积结构,可见光吸收性明显提高,同时禁带宽度降低。O掺杂的引入加速了光生电子-空穴对的分离和传输,能大幅度提高氮化碳的光催化分解水制氢性能,在可见光照下达88.6μmol·h~(-1),是未掺杂CN的3.91倍。  相似文献   

8.
9.
10.
设计、合成了一系列4,5,9,10-四芳基喹嗪并喹啉衍生物,并在均相光解水制氢体系中研究其光敏活性。研究结果表明,二氯化钯是其有效制氢的催化剂,还原淬灭是光敏剂的主要淬灭途径。通过光电物理化学性能研究表明,这类喹嗪并喹啉衍生物的取代基效应明显,而甲氧基有利于提高其荧光量子效率,最高可达0.48;同时供电子甲氧基取代基能明显提高光敏剂制氢性能,光敏剂3e的制氢总转换数(TON)可达341。  相似文献   

11.
Constructing photocatalysts to promote hydrogen evolution and carbon dioxide photoreduction into solar fuels is of vital importance. The design and establishment of an S-scheme heterojunction system is one of the most feasible approaches to facilitate the separation and transfer of photogenerated charge carriers and obtain powerful photoredox capabilities for boosting photocatalytic performance. Herein, a zero-dimensional/one-dimensional S-scheme heterojunction composed of CdSe quantum dots and polymeric carbon nitride nanorods (CdSe/CN) is created and constructed via a linker-assisted hybridization approach. The CdSe/CN composites exhibit superior photocatalytic activity in water splitting and promoted carbon dioxide conversion performance compared with CN nanorods and CdSe quantum dots. The best efficiency in photocatalytic water splitting (10.2% apparent quantum yield at 420 nm irradiation, 20.1 mmol g−1 h−1 hydrogen evolution rate) and CO2 reduction (0.77 mmol g−1 h−1 CO production rate) was achieved by 5%CdSe/CN composites. The significantly improved photocatalytic reactivity of CdSe/CN composites primarily originates from the emergence of an internal electric field in the zero-dimensional/one-dimensional S-scheme heterojunction, which could greatly improve the photoinduced charge-carrier separation. This work underlines the possibility of employing polymeric carbon nitride nanostructures as appropriate platforms to establish highly active S-scheme heterojunction photocatalysts for solar fuel production.  相似文献   

12.
采用低温热解法合成出g-C3N4和In2O3:Sn(ITO)催化剂粉体,通过静电引力作用将少量ITO纳米粉体分散在g-C3N4粉体颗粒表面制成ITO/g-C3N4异质结光催化剂。在可见光模拟系统中以乙醇为牺牲剂,检测氢气生成速率表征催化剂的光催化性能, 并借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见光漫反射吸收光谱(UV-Vis)等对催化剂粉体进行了表征。实验结果表明, ITO附着在g-C3N4颗粒表面有利于光生电子的转移和光解水析氢反应。ITO/g-C3N4催化剂较之纯g-C3N4催化剂活性显著提高。当ITO附着量为4%时,析氢速率可稳定在350 μmol·g-1·h-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号