首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Russian Journal of Applied Chemistry - Fundamental study of how radicals are generated, with involvement of trialkylboranes combined with oxygen and organoelement peroxides, was carried out. It was...  相似文献   

2.
The successful production of higher hydrocarbons from methane depends on the stability or the oxidation rate of the intermediate products. The performances of the BZSM-5 and the modified BZSM-5 catalysts were tested for ethylene conversion into higher hydrocarbons. The catalytic experiments were carried out in a fixed-bed micro reactor at atmospheric pressure. The catalysts were characterized using XRD, NH3-TPD, and IR for their structure and acidity. The result suggests that BZSM-5 is a weak acid. The introduction of copper into BZSM-5 improved the acidity of BZSM-5. The conversion of ethylene toward higher hydrocarbons is dependent on the acidity of the catalyst. Only weaker acid site is required to convert ethylene to higher hydrocarbons. The loading of Cu on BZSM-5 improved the selectivity for higher hydrocarbons especially at low percentage. The reactivity of ethylene is dependent on the amount of acidity as well as the presence of metal on the catalyst surface. Cu1%BZSM-5 is capable of converting ethylene to higher hydrocarbons. The balances between the metal and acid sites influence the performance of ethylene conversion and higher hydrocarbon selectivity. Higher loading of Cu leads to the formation of COx.  相似文献   

3.
The formylglycine-generating enzyme (FGE) is a unique copper protein that catalyzes oxygen-dependent C−H activation. We describe 1.66 Å- and 1.28 Å-resolution crystal structures of FGE from Thermomonospora curvata in complex with either AgI or CdII providing definitive evidence for a high-affinity metal-binding site in this enzyme. The structures reveal a bis-cysteine linear coordination of the monovalent metal, and tetrahedral coordination of the bivalent metal. Similar coordination changes may occur in the active enzyme as a result of CuI/II redox cycling. Complexation of copper atoms by two cysteine residues is common among copper-trafficking proteins, but is unprecedented for redox-active copper enzymes or synthetic copper catalysts.  相似文献   

4.
The LiOH-based cathode chemistry has demonstrated potential for high-energy Li−O2 batteries. However, the understanding of such complex chemistry remains incomplete. Herein, we use the combined experimental methods with ab initio calculations to study LiOH chemistry. We provide a unified reaction mechanism for LiOH formation during discharge via net 4 e oxygen reduction, in which Li2O2 acts as intermediate in low water-content electrolyte but LiHO2 as intermediate in high water-content electrolyte. Besides, LiOH decomposes via 1 e oxidation during charge, generating surface-reactive hydroxyl species that degrade organic electrolytes and generate protons. These protons lead to early removal of LiOH, followed by a new high-potential charge plateau (1 e water oxidation). At following cycles, these accumulated protons lead to a new high-potential discharge plateau, corresponding to water formation. Our findings shed light on understanding of 4 e cathode chemistries in metal–air batteries.  相似文献   

5.
Reaction ergodography for the addition of lithium hydride to acetylene indicates that the lithium hydride, in both monomeric and dimeric forms, reacts with the acetylene via two similar and competitive pathways. Hence, we have obtained the pseudo-first-order rate constant of this reaction.  相似文献   

6.
In the past two decades, the reaction mechanism of C−C bond formation from either methanol or dimethyl ether (DME) in the methanol-to-hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface-activated DME, by in situ solid-state NMR spectroscopy, a species crucial to the first C−C bond formation in the MTH process. New insights into the first C−C bond formation were provided, thus suggesting DME/methanol activation and direct C−C bond formation by an interesting synergetic mechanism, involving C−H bond breakage and C−C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.  相似文献   

7.
The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2–x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from ~60 to ~40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce–Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).  相似文献   

8.
Molecular dynamics simulation with the embedded atom method was applied to study the melting and coalescence in the mixed Cu–Ni nanoclusters. The validity of the model was tested by examining the consistency of the phase diagrams of the (Cu682-mNim)682 and (Cu1048-mNim)1048 clusters with the Cu–Ni bulk. The coalescences of two mixed Cu–Ni clusters and a pure Cu cluster with a pure Ni cluster were simulated. The coalesced temperature T c forming a liquid complex and melting temperature T m of the cluster with the same size were compared. The results indicate that T c is higher than T m for the coalescences of both (CuNi)682 and (CuNi)1048 clusters. The analysis of the relationship between the Cu–Ni bond content and T c indicates that the formation of the Cu–Ni bonds contributes a lot to the phenomenon.  相似文献   

9.
10.
The Raman spectra of liquid water in the region of O-H stretching vibrations were obtained in the temperature range 298–359 K. The Raman spectra were decomposed into the components using the XPSPEAK-4.1 program, and their temperature dependence was evaluated. The number of bifurcate hydrogen bonds and the percentage of rotational conformers containing bifurcate bonds were shown to increase with temperature. The defect mechanism of the molecular mobility of water on the hydrogen bond network in the temperature range 298–359 K was proposed.  相似文献   

11.
12.
Due to a high density of negative charges on its surface, DNA condenses cations as counterions, forming the so-called “ion atmosphere”. Although the release of counterions upon DNA–protein association has been postulated to have a major contribution to the binding thermodynamics, this release remains to be confirmed through a direct observation of the ions. Herein, we report the characterization of the ion atmosphere around DNA using NMR spectroscopy and directly detect the release of counterions upon DNA–protein association. NMR-based diffusion data reveal the highly dynamic nature of counterions within the ion atmosphere around DNA. Counterion release is observed as an increase in the apparent ionic diffusion coefficient, which directly provides the number of counterions released upon DNA–protein association.  相似文献   

13.
Elucidating the reaction mechanism in heterogeneous catalysis is critically important for catalyst development, yet remains challenging because of the often unclear nature of the active sites. Using a molecularly defined copper single-atom catalyst supported by a UiO-66 metal–organic framework (Cu/UiO-66) allows a detailed mechanistic elucidation of the CO oxidation reaction. Based on a combination of in situ/operando spectroscopies, kinetic measurements including kinetic isotope effects, and density-functional-theory-based calculations, we identified the active site, reaction intermediates, and transition states of the dominant reaction cycle as well as the changes in oxidation/spin state during reaction. The reaction involves the continuous reactive dissociation of adsorbed O2, by reaction of O2,ad with COad, leading to the formation of an O atom connecting the Cu center with a neighboring Zr4+ ion as the rate limiting step. This is removed in a second activated step.  相似文献   

14.
15.
Oxygen evolution reaction (OER) is the most critical step in water splitting, still limiting the development of efficient alkaline water electrolyzers. Here we investigate the OER activity of Au–Fe nanoalloys obtained by laser-ablation synthesis in solution. This method allows a high amount of iron (up to 11 at %) to be incorporated into the gold lattice, which is not possible in Au–Fe alloys synthesized by other routes, due to thermodynamic constraints. The Au0.89Fe0.11 nanoalloys exhibit strongly enhanced OER in comparison to the individual pure metal nanoparticles, lowering the onset of OER and increasing up to 20 times the current density in alkaline aqueous solutions. Such a remarkable electrocatalytic activity is associated to nanoalloying, as demonstrated by comparative examples with physical mixtures of gold and iron nanoparticles. These results open attractive scenarios to the use of kinetically stable nanoalloys for catalysis and energy conversion.  相似文献   

16.
A terylene membrane which kept pH〉12 in cathode compartment was used to construct a divided cell with a carbon/polytetrafluoroethylene(C/PTFE) O2-fed cathode. The concentrations of hydrogen peroxide (H2O2) and hydroxyl radical (HO^-)in the catholyte were 8.3 mg/L and 2.15 μmol/L, respectivel.y, which were determined by permanganate titration, electron spin resonance (ESR) spectrum and the fluorescence spectra. ;The efficiency of the removal of phenol achieved 100% as a result of these two kinds of stronger oxidizer.  相似文献   

17.
The development of low-cost catalysts containing earth-abundant elements as alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR) is crucial for the large-scale commercial application of proton exchange membrane fuel cells (PEMFCs). Nonprecious metal–nitrogen–carbon (M-N-C) materials represent the most promising candidates to replace Pt-based catalysts for PEMFCs applications. However, the high-temperature pyrolysis process for the preparation of M-N-C catalysts frequently leads to high structural heterogeneity, that is, the coexistence of various metal-containing sites and N-doped carbon structures. Unfortunately, this impedes the identification of the predominant catalytic active structure, and thus, the further development of highly efficient M-N-C catalysts for the ORR. This Minireview, after a brief introduction to the development of M-N-C ORR catalysts, focuses on the commonly accepted views of predominant catalytic active structures in M-N-C catalysts, including atomically dispersed metal–Nx sites, metal nanoparticles encapsulated with nitrogen-doped carbon structures, synergistic action between metal–Nx sites and encapsulated metal nanoparticles, and metal-free nitrogen-doped carbon structures.  相似文献   

18.
Composites were prepared from an aerosil and 4-n-alkyl-4′cyanobiphenyls with five to eight carbon atoms in the alkyl chain. Their high silica density of ~7?g aerosil in 1?cm3 of liquid crystal (LC) allows the observation of the behaviour of a thin cyanobiphenyl layer (having nearly a monolayer structure) on the silica particles. The systems are investigated by dielectric spectroscopy (10?2–109?Hz) in a large temperature range (220–370?K). All the composites show a (main) relaxation process at frequencies much lower than the processes observed for the bulk LC that was assigned to the dynamics of the molecules in the surface layer. The temperature dependence of its characteristic frequencies obeys the Vogel–Fulcher–Tammann law, which is found to be typical for glass-forming liquids. The quasi two-dimensional character of the glass transition in the surface layer is discussed for the first time. At the nematic-to-isotropic transition temperature of the bulk, the composites show a continuous decrease of the characteristic frequencies as a function of the alkyl chain length, while the bulk LCs show the well known odd–even behaviour. The magnitude and temperature dependence of the slow relaxation process in the composites (molecules on an outer surface) agree with those of the same molecules confined to the nanopores of molecular sieves (internal surface).  相似文献   

19.
Russian Journal of Physical Chemistry A - Kinetic parameters (rate constant, energy of activation, and entropy of activation) of the acid-catalyzed hydrolysis of the benzyl ethers...  相似文献   

20.
Russian Journal of Physical Chemistry A - Compounds BaLaInO4 and BaLaIn0.9Nb0.1O4.1 with the Ruddlesden–Popper structure, are synthesized. The ability of these phases with respect to...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号