首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four ruthenium(II) p-cymene complexes with naphthalene-based Schiff base ligands [Ru(p-cymene)LCl] (2a2d) have been synthesized and characterized. The half-sandwich ruthenium complexes were characterized by 1H and 13C NMR spectra, elemental analyses, and infrared spectrometry. The molecular structures of 2a, 2b, and 2c were confirmed by single-crystal X-ray diffraction. Furthermore, these half-sandwich ruthenium complexes are highly active catalysts for the hydrogenation of nitroarenes to anilines using NaBH4 as the reducing agent in ethanol at room temperature.  相似文献   

2.
Three half-sandwichruthenium(II) complexes with pyridine/phenylene bridged NHC = E (NHC = N-heterocyclic carbene, E = S, Se) ligands [Ru(p-cymene)L](PF6)1–2 ( 1a–1c , L = ligand) were synthesized and characterized. All ruthenium complexes were fully characterized by 1H and 13C NMR spectra, mass spectrometry, and single-crystalX-ray diffraction methods. Moreover, the half-sandwich ruthenium complexes with NHC = E ligands showed highly catalytic activities towards to the tandem dehydrogenation of ammonia borane (AB) and hydrogenation of R–NO2 to R–NH2 at 353 K in water.  相似文献   

3.
Three half-sandwich ruthenium complexes [Ru(p-cymene)LCl] containing salicylbenzoxazole ligands [LH = 2-(5-methyl-benzoxazol-2-yl)-4-methyl-phenol (2a), LH = 2-(5-methyl-benzoxazol-2-yl)-4-chloro-phenol (2b), and LH = 2-(5-methyl-benzoxazol-2-yl)-4-bromo-phenol (2c)] were synthesized and characterized. All half-sandwich ruthenium complexes were fully characterized by 1H and 13C NMR spectra, MS, elemental analyses, and UV–vis as well as cyclic voltammetry (CV). The molecular structures of 2a, 2b, and 2c were confirmed by single-crystal X-ray diffraction. Single-crystal X-ray structures show that the synthesized ruthenium complexes are three-legged piano-stools with a six-membered metallocycle formed by coordination of the bidentate salicylbenzoxazole ligands to the metal centers. Data from CV and UV–vis absorption of the ruthenium complexes indicated that by changing the substituent on the para position of (donating or withdraw group) the salicylbenzoxazole ligands, minor changes in redox and electronic properties of the ruthenium complexes were observed.  相似文献   

4.
Tethered and untethered ruthenium half-sandwich complexes were synthesized and characterized spectroscopically. X-ray crystallographic analysis of three untethered and two tethered Ru N-heterocyclic carbene (NHC) complexes were also carried out. These RuNHC complexes catalyze transfer hydrogenation of aromatic ketones in 2-propanol under reflux, optimally in the presence of (25 mol %) KOH. Under these conditions, the formation of 2–3 nm-sized Ru0 nanoparticles was detected by TEM measurements. A solid-state NMR investigation of the nanoparticles suggested that the NHC ligands were bound to the surface of the Ru nanoparticles (NPs). This base-promoted route to NHC-stabilized ruthenium nanoparticles directly from arene-tethered ruthenium–NHC complexes and from untethered ruthenium–NHC complexes is more convenient than previously known routes to NHC-stabilized Ru nanocatalysts. Similar catalytically active RuNPs were also generated from the reaction of a mixture of [RuCl2(p-cymene)]2 and the NHC precursor with KOH in isopropanol under reflux. The transfer hydrogenation catalyzed by these NHC-stabilized RuNPs possess a high turnover number. The catalytic efficiency was significantly reduced if nanoparticles were exposed to air or allowed to aggregate and precipitate by cooling the reaction mixtures during the reaction.  相似文献   

5.
Bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complexes, RuL2(DMSO)2, were synthesized by the reaction of dichlorotetrakis(dimethyl sulfoxide)ruthenium(II) with the sodium salts of 5-hydroxyflavone, 5-hydroxy-4′-methoxyflavone and 5-hydroxy-3′,4′,5′,7-tetramethoxyflavone, ( L ). The complexation was followed by 1H nmr spectroscopy. The 1:1 kinetically favoured tris(dimethyl sulfoxide)chloroflavonatoruthenium(II) complexes, RuLCl(DMSO)3, were initially formed and then transformed into the thermodynamically more stable ones. Each one of these complexes, by reacting with another equivalent of lig-and L, also gave rise to a mixture of 1:2 kinetic species, from which the 1:2 thermodynamically more stable bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complexes, RuL2(DMSO)2, were formed. The complexes were characterized by extensive studies involving 1H, 13C nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopy, mass spectrometry, cyclic voltammetry and elemental analysis. Such 1:2 complexes exhibited properties of two nonequivalent flavonate ligands and also of two non-equivalent dimethyl sulfoxide ligands; one of these dimethyl sulfoxide ligands is considered to be S-bonded and the other O-bonded. Also two quasireversible one-electron redox steps were observed at 0.53 to 0.57 and 0.44 to 0.41 V (vs Saturated Calomel Electrode). The spectroscopic results obtained allow for the discussion of stereochemistry of each bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complex and to postulate its possible structure as one corresponding to the more anisochronous species.  相似文献   

6.
In order to modulate the structure of a recently developed series of antitumor‐active, dinuclear Ru(II)–arene compounds, complexes 1c – 4c were synthesized. The complexes were modified with respect to their pyridinone moieties and the spacer linking the two metal centers. More particularly, the series of dinuclear ruthenium(II) complexes was extended to compounds with longer spacers, i.e. tetradecane and 3,7,10‐trioxotridecane, and the pyridinone ring was modified by replacing the methyl group by an ethyl group and by shifting the position of the methyl group. The organometallic ruthenium compounds were obtained from the reaction between [RuCl26p‐isopropyltoluene)]2 and ligands 1b – 4b with yields ranging from 41 to 67%. All compounds were characterized by standard methods: MS, 1H and 13C NMR spectroscopy and elemental analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Reaction of a series of directly connected oxazoline-imidazolium salts with silver(I) oxide and subsequent transmetallation with [Ru(p-cymene)Cl2]2 and anion exchange with KPF6 cleanly gave the corresponding 2-oxazolinyl-(N-mesityl)imidazolidene(chloro)ruthenium(II) half-sandwich complexes [RuCl(oxcarb)(p-cymene)]PF6, two derivatives of which were characterized by X-ray diffraction. Abstraction of the chloro ligand furnished the dicationic aqua complexes [Ru(H2O)(oxcarb)(p-cymene)](PF6)2 which possess a similar coordination geometry. The syntheses were found to be highly diastereoselective, since only one diastereoisomer could be observed in all ruthenium complexes upon reaction of the chiral enantiopure oxazoline-imidazolium salts. Their potential as transfer hydrogenation and Lewis acid catalysts has been probed.  相似文献   

8.
A series of di‐nuclear ruthenium arene complexes with TSC ligands ([(η6p‐cymene)Ru(N1,S‐TSC)]2Cl2, A‐type, 1 and 2 ) and their corresponding analogues ([(η6p‐cymene)Ru(N2,S‐TSC)]2Cl2, B‐type, 3 and 4 ), in which TSCs act as different coordination mode, have been synthesized and structurally characterized by a variety of physical methods. The molecular structures of 1 , 3 and 4 were determined using single‐crystal X‐ray diffraction analysis. The Gibbs free energy of the two examples of the two types of complexes ( 1 and 3 ) and bonding order in their single‐crystals were discussed using density functional theory (DFT) calculations. The compounds were further evaluated for their in vitro antiproliferative activities against several cancerous and HEK‐293 T noncancerous cell lines, and the results indicate that B‐type complexes show stronger cytotoxicity than A‐type complexes. Furthermore, the interactions of the compounds with DNA were investigated by electrophoretic mobility spectrometry studies.  相似文献   

9.
A series of cationic, half-sandwich ruthenium complexes with the general formula [(η6-arene)RuCl(R1S-C6H4-2-CHNR2)]+ (arene = p-cymene or hexamethylbenzene; R1 = CH2Ph, iPr, or Et; R2 = aryl) have been prepared from the reaction of [(η6-arene)RuCl2]2 with various N,S-donor Schiff base ligands derived from 2-(alkylthio)benzaldehyde and several primary amines. All of the ruthenium complexes were characterized by IR, 1H NMR, electrochemistry, and UV/Vis spectroscopies. The p-cymene complexes undergo irreversible oxidations while the hexamethylbenzene complexes undergo quasi-reversible oxidations. The molecular structures of ligand 1a and complexes 4a, 4l, and 5e were determined by X-ray crystallography.  相似文献   

10.
Synthesis and characterization of seven ruthenium(II) and ruthenium(III) complexes of sulphoxide with 2-aminobenzimidazole are reported. Three different formulations exist; [cis-RuCl2(SO)3(2-ABZ)]; [trans-RuCl2(SO)3)(2-ABZ)]; and [trans-RuCl4(SO)(2-ABZ (where SO?=?dimethylsulphoxide(DMSO)/tetramethylenesulphoxide(TMSO); 2-ABZ?=?2-aminobenzimidazole). These complexes are characterized by elemental analysis, conductivity magnetic susceptibility, 1H-NMR, 13C{1H}-NMR and electronic spectroscopy.  相似文献   

11.
A series of conformationally rigid half-sandwich organoruthenium(II) complexes with the general formula [(η6-p-cymene)RuCl(L)] (where L = mono anionic 2-(naphthylazo)phenolato ligands) have been synthesized from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with a set of 2-(naphthylazo)phenolato O,N-donor ligands. All the ruthenium complexes were fully characterized by FT-IR, 1H NMR, and UV–Vis spectroscopy as well as elemental analysis. In dichloromethane solution all the metal complexes exhibits characteristic metal-to-ligand charge transfer bands (MLCT) and emission bands in the visible region. The molecular structure of one of the complexes [Ru(η6-p-cymene)(Cl)(L2)] (2) was determined by X-ray crystallography. Electrochemical data of all the ruthenium complexes show a two metal centered voltammetric responses with respect to Ag/AgCl at scan rate 100 mV s−1. Further, the complex (2) efficiently catalyzes the oxidation of a wide range of alcohols to their corresponding carbonyl compounds in the presence of N-methylmorpholine-N-oxide (NMO) up to 97%.  相似文献   

12.
This note reports the facile synthesis of two ruthenium cyclopentadienyl half-sandwich complexes functionalized with coordinating α-picolinates. The synthetic approach involves the (η5-chloromethylcyclopentadienyl)(η6-benzene)ruthenium(II) cation as a useful common building block for cyclopentadienyl complexes bearing anchored ligands.  相似文献   

13.
A dinucleating spacer 1,4-bis(salicylidene)phenylenediamine (SALPHEN) derived from 1,4-phenylenediamine and salicylaldehyde has been synthesized and characterized. The ruthenium(II) sulfoxide derivative of 2,2′-bipyridine or 1,10-phenanthroline on reaction with this ligand resulted in the formation of eight dinuclear complexes, which were characterized by elemental analyses, conductivity measurements, magnetic susceptibility, FT-IR, fast atom bombardment-mass spectra, electronic spectroscopy, 1H-NMR, 13C{1H}-NMR, and 2D-NMR spectra (HETCOR). The prepared complexes have two different formulations, [{trans-RuCl2(so)(N–N′)}2(μ-SALPHEN)] and [{cis-RuCl2(so)(N–N′)}2(μ-SALPHEN)], where so?=?dimethyl sulfoxide (DMSO)/tetramethylene sulfoxide (TMSO), N–N′?=?2,2′-bipyridine/1,10-phenanthroline, and SALPHEN?=?1,4-bis(salicylidene)phenylenediamine. Two moles of ruthenium sulfoxide bipyridine precursor were coordinated to the bidentate SALPHEN through nitrogen. All the complexes possess antibacterial activity against Escherichia coli in comparison to Chloramphenicol.  相似文献   

14.
Three new ruthenium(II)-arene halido complexes, [(η6-p-cymene) RuX(L)] (1–3), were synthesized in a reaction of [(η6-p-cymene)RuX2]2 with 5-chloro-1H-benzimidazole-2-carboxylic acid (HL) in ethanol (X = Cl (1), Br (2), I (3)). The complexes were characterized by elemental analysis, mass spectrometry, IR, 1H and 13C NMR spectroscopy. The cytotoxic activity of the ligand precursor and its ruthenium complexes was tested by MTT assay in human cancer cell lines: lung adenocarcinoma (A549), myelogenous leukemia (K562) as well as in one normal human fetal lung fibroblast cell line (MRC-5). The results show that ruthenium(II)-arene complexes possess enhanced cytotoxicity when compared to HL in the range of concentrations up to 300 µM. In terms of halido ligand substitution, cytotoxic activity toward A549 and K562 cell lines in 1–3 serie significantly increased (e.g., IC50 values for K562: 1: 205.76 µM; 2: 174.77 µM; 3: 83.97 µM). All studied compounds were found to be ineffective toward MRC-5. Hydrolysis of 1–3 was followed by UV-vis spectroscopy at 25?°C, revealing ligand-substitution reactions at the Ru(II) center. Compounds 2 and 3 underwent rapid hydrolysis ranging from a few minutes for the aquation to ca. 20?min, confirming typical Ru-arene behavior in aqueous solutions.  相似文献   

15.
This paper reports facile preparation of half-sandwich trihydrido complexes of ruthenium based on the reactions of the readily available precursors [Cp(R3P)Ru(NCCH3)2][PF6] with LiAlH4. The target complexes were characterized by spectroscopic methods and X-ray structure analysis of .  相似文献   

16.
The reaction of the phosphine functionalised titanium half-sandwich complexes 7, 9 and 10 with the binuclear complex [(p-cymene)RuCl2]2 allowed the access to three new early-late bimetallic complexes (p-cymene)[(μ-η51-C5H4(CH2)nPR2)TiX3]RuCl2 (11-13). The structure of 11 (n = 0, X = Cl) has been confirmed by X-ray diffraction. The ruthenium titanium half-sandwich bimetallic complexes so formed and the ruthenium titanocene analogues 4-6 catalyse the addition of ethyl diazoacetate to styrene with high selectivity toward cyclopropanation versus metathesis contrary to the monometallic complexes (p-cymene)RuCl2PR3.  相似文献   

17.
Synthesis and characterization of seven ruthenium(II) and ruthenium(III) complexes of sulfoxide with 2-aminobenzothiazole are reported. Three different formulations exist: [cis,cis,cis-RuCl2(SO)2(2-abtz)2] and [trans,trans,trans-RuCl2(SO)2(2-abtz)2] and [trans-RuCl4(SO)(2-abtz)] ? [X]+ (where SO?=?dimethyl sulfoxide (dmso) or tetramethylenesulfoxide (tmso); 2-abtz?=?2-aminobenzothiazole and [X]+?=?[H(abtz)]+, [Na+]. These complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility, FTIR, 1H NMR, 13C{1H} NMR and electronic spectroscopy. Some of the complexes were screened for their antibacterial activity and are found to be potent against the gram negative bacteria Escherichia coli.  相似文献   

18.
Herein, we explore the coordination of di- and triimine chelators at ruthenium(II) and ruthenium(III) centers. The reactions of 2,6-bis-((4-tetrahydropyranimino)methyl)pyridine (thppy), N1,N2-bis((3-chromone)methylene)benzene-1,2-diamine (chb), and tris-((1H-pyrrol-2-ylmethylene)ethane)amine (H3pym) with trans-[RuIICl2(PPh3)3] afforded the diamagnetic ruthenium(II) complex cis-[RuCl2(thppy)(PPh3)] (1) and the paramagnetic complexes [mer-Ru2(μ-chb)Cl6(PPh3)2] (2), and [Ru(pym)] (3), respectively. The complexes were characterized by IR, NMR, and UV–vis spectroscopy and molar conductivity measurements. The structures were confirmed by single crystal X-ray diffraction studies. The redox properties of the metal complexes were probed via cyclic- and squarewave voltammetry. Finally, the radical scavenging capabilities of the metal complexes towards the NO and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radicals were investigated  相似文献   

19.
Two piano-stool ruthenium(II) complexes Ru(η6-p-cymene)Cl2PPh2CH2OH ( RuPOH ) and Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH ( RuMPOH ) and two half-sandwich iridium(III) complexes Ir(η 5-Cp*)Cl2PPh2CH2OH ( IrPOH ) and Ir(η 5-Cp*)Cl2P(p-OCH3Ph)2CH2OH ( IrMPOH ) have been studied in terms of potential anticancer activity on previously selected cell line (human lung adenocarcinoma). Based on experimental results obtained in monoculture in vitro model mechanistic considerations on the possible cellular modes of action have been carried out. ICP-MS analysis revealed the higher cellular uptake for less hydrophobic Ir(III) complexes in comparison to the corresponding Ru(II) compounds. Cytometric analysis showed a predominance of apoptosis over the other types of cell death for all complexes. The apoptotic pathway was confirmed by a decrease in mitochondrial membrane potential and the activation of caspases-3/9 for both Ru(II) and Ir(III) complexes. It was concluded that in the case of Ru(II) complexes the intense ROS generation is mainly responsible for the resulting cytotoxicity. The corresponding Ir(III) complexes trigger simultaneously at least three different cytotoxic pathways i. e., depletion of mitochondrial potential, activation of caspases-dependent apoptosis, and ROS-associated oxidation. Thus, it can be assumed that the final accumulation of toxic effects over time via parallel activation of different pathways results in the highest cytotoxicity in vitro exhibited by Ir(III) complexes when compared with Ru(II) complexes.  相似文献   

20.
Electrospray ionization mass spectrometry (ESIMS) and subsequent tandem mass spectrometry (MS/MS) analyses were used to study some important metathesis reactions with the first‐generation ruthenium catalyst 1 , focusing on the ruthenium complex intermediates in the catalytic cycle. In situ cationization with alkali cations (Li+, Na+, K+, and Cs+) using a microreactor coupled directly to the ESI ion source allowed mass spectrometric detection and characterization of the ruthenium species present in solution and particularly the catalytically active monophosphine–ruthenium intermediates present in equilibrium with the respective bisphosphine–ruthenium species in solution. Moreover, the intrinsic catalytic activity of the cationized monophosphine–ruthenium complex 1 a ?K+ was directly demonstrated by gas‐phase reactions with 1‐butene or ethene to give the propylidene Ru species 3 a ?K+ and the methylidene Ru species 4 a ?K+, respectively. Ring‐closing metathesis (RCM) reactions of 1,6‐heptadiene ( 5 ), 1,7‐octadiene ( 6 ) and 1,8‐nonadiene ( 7 ) were studied in the presence of KCl and the ruthenium alkylidene intermediates 8 , 9 , and 10 , respectively, were detected as cationized monophosphine and bisphosphine ruthenium complexes. Acyclic diene metathesis (ADMET) polymerization of 1,9‐decadiene ( 14 ) and ring‐opening metathesis polymerization (ROMP) of cyclooctene ( 18 ) were studied analogously, and the expected ruthenium alkylidene intermediates were directly intercepted from reaction solution and characterized unambiguously by their isotopic patterns and ESIMS/MS. ADMET polymerization was not observed for 1,5‐hexadiene ( 22 ), but the formation of the intramolecularly stabilized monophosphine ruthenium complex 23 a was seen. The ratio of the signal intensities of the respective with potassium cationized monophosphine and bisphosphine alkylidene Ru species varied from [I 4a ]/[I 4 ]=0.02 to [I 23a ]/[I 23 ]=10.2 and proved to be a sensitive and quantitative probe for intramolecular π‐complex formation of the monophosphine–ruthenium species and of double bonds in the alkylidene chain. MS/MS spectra revealed the intrinsic metathesis catalytic activity of the potassium adduct ions of the ruthenium alkylidene intermediates 8 a , 9 a , 10 a , 15 a , and 19 a , but not 23 a by elimination of the respective cycloalkene in the second step of RCM. Computations were performed to provide information about the structures of the alkali metal adduct ions of catalyst 1 and the influence of the alkali metal ions on the energy profile in the catalytic cycle of the metathesis reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号