首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
As a key element in the construction of complex organic scaffolds, the formation of C?C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single‐electron chemistry have enabled new methods for the formation of various C?C bonds. Disclosed herein is the development of a novel single‐electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical–radical coupling was made possible merging N‐heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late‐stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.  相似文献   

2.
Radical borylation using N‐heterocyclic carbene (NHC)‐BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo‐ and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC‐boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC‐boryl radicals enabled by photoredox catalysis. NHC‐boryl radicals are generated via a single‐electron oxidation and subsequently undergo cross‐coupling with the in‐situ‐generated radical anions to yield gem‐difluoroallylboronates. A photoredox‐catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC‐boryl radicals through a single‐electron‐transfer pathway.  相似文献   

3.
王乐明  王骞  陈杰安  黄湧 《化学学报》2018,76(11):850-856
该研究基于氮杂环卡宾(N-heterocyclic carbene,NHC)新颖的协同催化策略,通过Lewis酸共催化剂调控反应具体途径.从α,β-不饱和醛类化合物出发,立足于多反应位点的高烯醇中间体,与氯化镁协作实现高对映选择性的质子转移历程,构建β-手性酯类产物;在相似的反应体系中与氯化钌协作实现高效的空气氧化,构建α,β-不饱和酯类化合物.这两个迥异的反应途径对底物均有较好的官能团容忍性,以高转化率得到目标产物.  相似文献   

4.
In the search of smarter routes to control the conditions of N-heterocyclic carbene (NHCs) formation, a two-component air-stable NHC photogenerating system is reported. It relies on the irradiation at 365 nm of a mixture of 2-isopropylthioxanthone (ITX) with 1,3-bis(mesityl)imidazoli(ni)um tetraphenylborate. The photoinduced liberation of NHC is evidenced by reaction with a mesitoyl radical to form an NHC-radical adduct detectable by electron spin resonance spectroscopy. The NHC yield can be determined by 1H NMR spectroscopy through the formation of a soluble and stable NHC–carbodiimide adduct. To deprotonate the azolium salt and liberate the NHC, a mechanism is proposed in which the role of base is played by ITX radical anion formed in situ by a primary photoinduced electron-transfer reaction between electronically excited ITX (oxidant) and BPh4 (reductant). An NHC yield as high as 70 % is achieved upon starting with a stoichiometric ratio of ITX and azolium salt. Three different photoNHC-mediated polymerizations are described: synthesis of polyurethane and polyester by organocatalyzed step-growth polymerization and ring-opening copolymerization, respectively, and generation of polynorbornene by ring-opening metathesis polymerization using an NHC-coordinated Ru catalyst formed in situ.  相似文献   

5.
Conversion of aryl ketones to the corresponding aromatic carboxylic acids has been achieved using sequential treatment of HDNIB and urea–hydrogen peroxide in [bmim]BF4 ionic liquid.  相似文献   

6.
A simple visible light photochemical, nickel-catalyzed synthesis of ketones from carboxylic acid-derived precursors is presented. Hantzsch ester (HE) functions as a cheap, green and strong photoreductant to facilitate radical generation and also engages in the Ni-catalytic cycle to restore the reactive species. With this dual role, HE allows for the coupling of a large variety of radicals (1°,2°, benzylic, α-oxy & α-amino) with aroyl and alkanoyl moieties, a new feature in reactions of this type. With both precursors deriving from abundant carboxylic acids, this protocol is a welcome addition to the organic chemistry toolbox. The reaction proceeds under mild conditions without the need for toxic metal reagents or bases and shows a wide scope, including pharmaceuticals and complex molecular architectures.  相似文献   

7.
The synthesis of ambiphilic N-heterocyclic carbene ligand, indol-2-ylidene (IdY, A ), is described. A series of indolenium precursors ( 2 a – f ) were prepared on a gram scale in good yields. Trapping experiments with elemental selenium, [RhCl(cod)]2 and CuCl provided the expected carbene adducts. Further computational and spectroscopic studies supported the ambiphilicity of IdY, which lies between cyclic (alkyl)(amino)carbenes (CAAC-5) and cyclic (amino)(aryl)carbene (CAArC). The copper complexes ( 6 ) show high percent buried volume (% Vbur = 58.1) and allow for carboboration of terminal alkynes within 30 minutes in a demonstration of synthetic utility with good yields and high regioselectivity.  相似文献   

8.
9.
Direct synthesis of carboxylic–phosphinic mixed anhydrides has been achieved by treating carbon dioxide with N‐phosphine oxide‐substituted imidazolylidenes (PoxIms) that contain both nucleophilic carbene and electrophilic phosphorus moieties. This novel mixed anhydride was efficiently derivatized into an ester, an amide, and an unsymmetrical ketone via transformation into its corresponding imidazolium salt followed by a dual substitution reaction. The presented work used well‐designed multifunctional carbene reagents to establish a novel utility for carbon dioxide in organic synthesis.  相似文献   

10.
Carbon–carbon bond cleavage/functionalization is synthetically valuable, and selective carbonyl−C(sp3) bond cleavage/alkynylation presents a new perspective in constructing ynamides, ynoates, and ynones. Reported here is the first alkoxyl‐radical‐enabled carbonyl−C(sp3) bond cleavage/alkynylation reaction by photoredox catalysis. The use of novel cyclic iodine(III) reagents are essential for β‐carbonyl alkoxyl radical generation from β‐carbonyl alcohols, including alcohols with high redox potential ( >2.2 V vs. SCE in MeCN). β‐Amide, β‐ester, and β‐ketone alcohols yield ynamides, ynoates, and ynones, respectively, for the first time, with excellent regio‐ and chemoselectivity under mild reaction conditions.  相似文献   

11.
A simple and straightforward approach to the synthesis of trifluoromethyl and difluoromethyl ketones from widely available carboxylic acids is disclosed. The transformation utilizes an acyloxyphosphonium ion as the active electrophile, conveniently generated in situ from the carboxylic acid substrate by using commodity chemicals. The utility of the reaction system is exemplified by its chemoselectivity, with tolerance to a variety of important functional groups. The late-stage functionalization of carboxylic acid active pharmaceutical ingredients and pharmaceutically relevant compounds is also discussed.  相似文献   

12.
Activity of 20wt% MO2/Al2O3 catalysts, where M = Mn, Ce and Zr has been studied in ketonisation of the mixtures of propanoic/pentanoic, ethanoic/10-undecenoic and hexanoic/(Z)-9-octadecenoic (oleic) acids. Irrespective of the molecular weights and molar ratios of reacting acids, high yields of ketones were obtained over Mn and Ce oxide catalysts at approximately 673 K. Isomerization of C=C double bonds and partial pyrolysis occurred during catalytic ketonization of 10-undecenoic and oleic acids, diminishing slightly the yield of ketones. The preparation of (Z)-14-tricosen-6-one has been performed, being the starting material for the synthesis of (Z)-9-tricosene - sex attractant of male house fly.  相似文献   

13.
A mild and facile method for preparing highly functionalized pyrrolo[1,2‐a]quinoxalines and other nitrogen‐rich heterocycles, each containing a quinoxaline core or an analogue thereof, has been developed. The novel method features a visible‐light‐induced decarboxylative radical coupling of ortho‐substituted arylisocyanides and radicals generated from phenyliodine(III) dicarboxylate reagents and exhibits excellent functional group compatibility. A wide range of quinoxaline heterocycles have been prepared. Finally, a telescoped preparation of these polycyclic compounds by integration of the in‐line isocyanide formation and photochemical cyclization has been established in a three‐step continuous‐flow system.  相似文献   

14.
The combination of conventional transition‐metal‐catalyzed coupling (2 e? process) and photoredox catalysis (1 e? process) has emerged as a powerful approach to catalyze difficult cross‐coupling reactions under mild reaction conditions. Reported is a palladium carbodicarbene (CDC) complex that mediates both a Suzuki–Miyaura coupling and photoredox catalysis for C?N bond formation upon visible‐light irradiation. These two catalytic pathways can be combined to promote both conventional transition‐metal‐catalyzed coupling and photoredox catalysis to mediate C?H arylation under ambient conditions with a single catalyst in an efficient one‐pot process.  相似文献   

15.
N‐heterocyclic carbene (NHC) catalysis has emerged as a powerful strategy in organic synthesis. In recent years a number of reviews have been published on NHC‐catalyzed transformations involving Breslow intermediates, acyl azoliums, α,β‐unsaturated acyl azoliums, homoenolate equivalents, and azolium enolates. However, the azolium dienolate intermediates generated by NHCs have been employed in asymmetric synthesis only very recently, especially in cycloadditions dealing with remote functionalization. This Minireview highlights all the developments and the new advances in NHC‐catalyzed asymmetric cycloaddition reactions involving azolium dienolate intermediates.  相似文献   

16.
固体酸催化合成二芳基甲酮化合物的研究进展   总被引:1,自引:0,他引:1  
二芳基甲酮化合物是一类非常重要的化工产品和医药中间体,广泛应用于医药、涂料、电子及日用化工等领域综述了在不同类型固体酸催化下,利用Friedel-Crafts酰基化反应合成二芳基甲酮化合物的研究进展.  相似文献   

17.
The combination of light activation and N‐heterocyclic carbene (NHC) organocatalysis has enabled the use of acid fluorides as substrates in a UVA‐light‐mediated photochemical transformation previously observed only with aromatic aldehydes and ketones. Stoichiometric studies and TD‐DFT calculations support a mechanism involving the photoactivation of an ortho‐toluoyl azolium intermediate, which exhibits “ketone‐like” photochemical reactivity under UVA irradiation. Using this photo‐NHC catalysis approach, a novel photoenolization/Diels–Alder (PEDA) process was developed that leads to diverse isochroman‐1‐one derivatives.  相似文献   

18.
刘波张娜  陈万芝 《化学进展》2010,22(11):2134-2146
由于N-杂环卡宾配体(NHCs)的独特性能,N-杂环卡宾过渡金属配合物在均相催化等方面取得了重要应用,但是其合成方法却发展缓慢。本文综述了N-杂环卡宾过渡金属配合物合成方法的最新研究进展,介绍了富电子烯烃裂解反应、游离NHC直接配位反应、配体底物的脱质子原位反应、卡宾加合物热解反应、金属交换转移反应和C2-X(X为甲基、卤原子或氢原子)键氧化加成反应等合成N-杂环卡宾过渡金属配合物的主要方法,此外本课题组还首次发现了金属粉末法,该法可用于规模化合成铁、钴、镍、铜等第一过渡系金属NHC配合物。  相似文献   

19.
A stereodivergent reductive coupling reaction between allylic carbonates and vinyl triflates to furnish both E‐ and Z‐configured 1,4‐dienes has been achieved by visible‐light‐induced photoredox/nickel dual catalysis. The mild reaction conditions allow good compatibility of both vinyl triflates and allylic carbonates. Notably, the stereoselectivity of this synergistic cross‐electrophile coupling can be tuned by an appropriate photocatalyst with a suitable triplet‐state energy, providing a practical and stereodivergent means to alkene synthesis. Preliminary mechanistic studies shed some light on the coupling step as well as the control of the stereoselectivity step.  相似文献   

20.
A chiral iridium carbene-oxazoline catalyst is reported that is able to directly and efficiently hydrogenate a wide variety of ketones in excellent yields and good enantioselectivity (up to 93 % ee). Moreover, when using racemic α-substituted ketones, excellent diastereoselectivities were obtained (dr 99:1) by dynamic kinetic resolution of the in situ formed enolate. Overall, the herein described hydrogenation occurs under ambient conditions using low hydrogen pressures, providing a direct and atom efficient method towards chiral secondary alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号