首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Herein, the universal design of high-efficiency stimuli-responsive luminous materials endowed with mechanochromic luminescence (MCL) and thermally activated delayed fluorescence (TADF) functions is reported. The origin of the unique stimuli-triggered TADF switching for a series of carbazole–isophthalonitrile-based donor–acceptor (D–A) luminogens is demonstrated based on systematic photophysical and X-ray analysis, coupled with theoretical calculations. It was revealed that a tiny alteration of the intramolecular D–A twisting in the excited-state structures governed by the solid morphologies is responsible for this dynamic TADF switching behavior. This concept is applicable to the fabrication of bicolor emissive organic light-emitting diodes using a single TADF emitter.  相似文献   

2.
Thermally activated delayed fluorescence molecules (TADF) molecules have been found to undergo efficient intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes, which benefit their successful applications in organic light emitting diodes (OLEDs). Due to their long-lived delayed fluorescence, TADF molecules can also be applied in time-resolved luminescence imaging. Besides their special singlet properties, their excited triplet characteristics provide their potential applications in triplet-triplet annihilation upconversion (TTA-UC), photodynamic therapy (PDT) and organic photocatalytic synthesis by used as a triplet photosensitizer.  相似文献   

3.
Thermally activated delayed fluorescence (TADF) organic molecules feature with long-lived delayed fluorescence, because they can undergo not only efficient intersystem crossing (ISC), but also efficient reverse intersystem crossing (RISC) at room temperature. As a new type of luminescent molecules, they have exhibited successful applications in organic light emitting diodes (OLEDs). Aside from OLEDs, they are also found to have potential applications in time-resolved luminescence imaging based on long-lived fluorescence property. Meanwhile, due to their excited triplet characteristic originated from efficient ISC, they were found to be applied in triplet-triplet annihilation upconversion (TTA-UC), photodynamic therapy (PDT) and organic photocatalytic synthesis. This review briefly summarizes the characteristics and excellent photophysical properties of TADF organic compounds, then covers their applications to date aside from OLEDs based on their highly efficient ISC ability and RISC ability at room temperature.  相似文献   

4.
Clusters combine the advantages of organic molecules and inorganic nanomaterials, which are promising alternatives for optoelectronic applications. Nonetheless, recently emerged cluster light-emitting diodes require further excited state optimization of cluster emitters, especially to reduce population of the cluster-centered triplet quenching state (3CC). Here we report that redox-active ligands enhance reverse intersystem crossing (RISC) of Cu4I4 cluster for triplet-to-singlet conversion, and thermally activated delayed fluorescence (TADF) host can provide an external RISC channel. It indicates that the complementarity between TADF host and cluster in RISC transitions gives rise to 100 % triplet conversion efficiency and complete singlet exciton convergence, rendering 100-fold increased singlet radiation rate constant and tenfold decreased triplet non-radiation rate constant. We achieve a photoluminescence quantum yield of 99 % and a record external quantum efficiency of 29.4 %.  相似文献   

5.
In the field of organic light-emitting diodes, thermally activated delayed fluorescence (TADF) materials have achieved great performance. The key factor for this performance is the small energy gap (ΔEST) between the lowest triplet (T1) and singlet excited (S1) states, which can be realized in a well-separated donor-acceptor system. Such systems are likely to possess similar charge transfer (CT)-type T1 and S1 states. Recent investigations have suggested that the intervention of other type-states, such as locally excited triplet state(s), is necessary for efficient reverse intersystem crossing (RISC). Here, we theoretically and experimentally demonstrate that our blue TADF material exhibits efficient RISC even between singlet CT and triplet CT states without any additional states. The key factor is dynamic flexibility of the torsion angle between the donor and acceptor, which enhances spin-orbit coupling even between the charge transfer-type T1 and S1 states, without sacrificing the small ΔEST. This results in excellent photoluminescence and electroluminescence performances in all the host materials we investigate, with sky-blue to deep-blue emissions. Among the hosts investigated, the deepest blue emission with CIE coordinates of (0.15, 0.16) and the highest EQEMAX of 23.9 % are achieved simultaneously.  相似文献   

6.
As an analogue to thermally activated delayed fluorescence (TADF) of organic molecules, thermally activated delayed photoluminescence (TADPL) observed in molecule-functionalized semiconductor nanocrystals represents an exotic mechanism to harvest energy from dark molecular triplets and to obtain controllable, long-lived PL from nanocrystals. The reported TADPL systems have successfully covered the visible spectrum. However, TADF molecules already emit very efficiently in the visible, diminishing the technological impact of the less-efficient nanocrystal-molecule TADPL. Here we report bright, near-infrared TADPL in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, which results from efficient triplet energy transfer from photoexcited nanocrystals to ligands, followed with thermally activated reverse energy transfer from ligand triplets back to nanocrystals. This strategy prolonged the nanocrystal exciton lifetime from 100 ns to 60 μs at room temperature.  相似文献   

7.
Harvesting non‐emissive spin‐triplet charge‐transfer (CT) excitons of organic semiconductors is fundamentally important for increasing the operation efficiency of future devices. Here we observe thermally activated delayed fluorescence (TADF) in a 1:2 CT cocrystal of trans‐1,2‐diphenylethylene (TSB) and 1,2,4,5‐tetracyanobenzene (TCNB). This cocrystal system is characterized by absorption spectroscopy, variable‐temperature steady‐state and time‐resolved photoluminescence spectroscopy, single‐crystal X‐ray diffraction, and first‐principles calculations. These data reveal that intermolecular CT in cocrystal narrows the singlet–triplet energy gap and therefore facilitates reverse intersystem crossing (RISC) for TADF. These findings open up a new way for the future design and development of novel TADF materials.  相似文献   

8.
Thermally activated delayed fluorescence (TADF) materials have attracted great potential in the field of organic light-emitting diodes (OLEDs). Among thousands of TADF materials, highly twisted TADF emitters have become a hotspot in recent years. Compared with traditional TADF materials, highly twisted TADF emitters tend to show multi-channel charge-transfer characters and form rigid molecular structures. This is advantageous for TADF materials, as non-radiative decay processes can be suppressed to facilitate efficient exciton utilization. Accordingly, OLEDs with excellent device performances have also been reported. In this Review, we have summarized recent progress in highly twisted TADF materials and related devices, and give an overview of the molecular design strategies, photophysical studies, and the performances of OLED devices. In addition, the challenges and perspectives of highly twisted TADF molecules and the related OLEDs are also discussed.  相似文献   

9.
Nowadays,the development of trip let-involved materials becomes a hot research topic in solid-state luminescence fields.However,the mechanism of trip let-involved emission still remains some mysteries to conquer.Here,we proposed a new concept of excited-state confo rmation capture for the const ructio ns of different types of trip let-involved materials.Firstly,excited-state conformation could be trapped by supramolecular chains in crystal and fo rm a new optimum excited-state structure which is different from that in solution or simple rigid environment,leading to bright thermally activated delayed fluorescence(TADF) emission.Based on excited-state conformation capture methodology,next,we obtained roomtemperature phosphorescence(RTP) by introducing Br atoms for the enhancement of intersystem crossing.It could be concluded from experime ntal results that TADF may originate from aggregate effect while RTP may derive from monomers.Finally,heavy-atom free RTP and ultra RTP were achieved by eliminating aggregate effect.This wo rk could not only exte nd the design methodology of triplet-involved materials but also set clear evidences for the mechanism of triplet-involved emissions.  相似文献   

10.
Heavy-atom integration into thermally activated delayed fluorescence (TADF) molecule could significantly promote the reverse intersystem crossing (RISC) process. However, simultaneously achieving high efficiency, small roll-off, narrowband emission and good operational lifetime remains a big challenge for the corresponding organic light-emitting diodes (OLEDs). Herein, we report a pure green multi-resonance TADF molecule BN-STO by introducing a peripheral heavy atom selenium onto the parent BN-Cz molecule. The organic light-emitting diode device based on BN-STO exhibited state-of-the-art performance with a maximum external quantum efficiency (EQE) of 40.1 %, power efficiency (PE) of 176.9 lm W−1, well-suppressed efficiency roll-off and pure green gamut. This work reveals a feasible strategy to reach a balance between fast RISC process and narrow full width at half maximum (FWHM) of MR-TADF by heavy atom effect.  相似文献   

11.
Organic room-temperature phosphorescent (RTP) materials routinely incorporate polymeric components, which usually act as non-functional or “inert” media to protect excited-state phosphors from thermal and collisional quenching, but are lesser explored for other influences. Here, we report some exemplary “active roles” of polymer matrices played in organic RTP materials, including: 1) color modulation of total delayed emissions via balancing the population ratio between thermally-activated delayed fluorescence (TADF) and RTP due to dielectric-dependent intersystem crossing; 2) altered air sensitivity of RTP materials by generating various surface morphologies such as nano-sized granules; 3) enhanced bacterial elimination for enhanced electrostatic interactions with negatively charged bio-membranes. These active roles demonstrated that the vast library of polymeric structures and functionalities can be married to organic phosphors to broaden new application horizons for RTP materials.  相似文献   

12.
Metal-based thermally activated delayed fluorescence (TADF) is conceived to inherit the advantages of both phosphorescent metal complexes and purely organic TADF compounds for high-performance electroluminescence. Herein a panel of new TADF Au(I) emitters has been designed and synthesized by using carbazole and pyrazine-fused nitrogen-heterocyclic carbene (NHC) as the donor and acceptor ligands, respectively. Single-crystal X-ray structures show linear molecular shape and coplanar arrangement of the donor and acceptor with small dihedral angles of <6.5°. The coplanar orientation and appropriate separation of the HOMO and LUMO in this type of molecules favour the formation of charge-transfer excited state with appreciable oscillator strength. Together with a minor but essential heavy atom effect of Au ion, the complexes in doped films exhibit highly efficient (Φ∼0.9) and short-lived (<1 μs) green emissions via TADF. Computational studies on this class of emitters have been performed to decipher the key reverse intersystem crossing (RISC) pathway. In addition to a small energy splitting between the lowest singlet and triplet excited states (ΔEST), the spin-orbit coupling (SOC) effect is found to be larger at a specific torsion angle between the donor and acceptor planes which favours the RISC process the most. This work provides an alternative molecular design to TADF Au(I) carbene emitters for OLED application.  相似文献   

13.
14.
Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.76 in doped films (5 wt % in PMMA) at room temperature. The modifications of alkynyl ligands with electron-donating amino groups together with the use of electron-deficient carbene ligands induce ligand-to-ligand charge transfer excited states that give rise to TADF emission. Spectroscopic and density functional theory (DFT) calculations reveal the roles of electron-donating capability of the alkynyl ligand in tuning the excited-state properties. Solution-processed organic light-emitting diodes (OLEDs) using the present complexes as emitters achieve maximum external quantum efficiency (EQE) of up to 20 %.  相似文献   

15.
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.  相似文献   

16.
A symmetrical host material, 2,7-di(9,9-dimethyl-9H-fluoren-1-yl)-9H-thioxanthen-9-one (DMBFTX), with TADF property was firstly developed. The red phosphorescent OLED based on this TADF host displays a lower EQEs rolloff of 38.8% at a luminance of 10 000 cd/m2 as compared to 71.2% of commercial mCP host, which is resulted from the upconversion of DMBFTX from triplet to singlet.  相似文献   

17.
Recently, organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) materials have aroused huge attention in both academia and industry. Compared with fluorescent and phosphorescent materials, TADF materials can theoretically capture 100 % excitons without incorporating noble metals, making them effective emitters and hosts for OLEDs simultaneously. Here, in this review, our recent works on mechanisms and materials of high performance TADF‐sensitized phosphorescent (TSP) OLEDs, TADF‐sensitized fluorescent (TSF) OLEDs and TADF‐sensitized TADF (TST) OLEDs are summarized. Finally, we propose the outlook for the further development and application of TADF‐sensitized OLEDs.  相似文献   

18.
Spin–orbit coupling (SOC) is an essential factor in photophysics of heavy transition metal complexes. By enabling efficient population of the lowest triplet state and its strong emission, it gives rise to a very interesting photophysical behavior and underlies photonic applications such as organic light emitting diodes (OLED) or luminescent imaging agents. SOC affects excited-state characters, relaxation dynamics, radiative and nonradiative decay pathways, as well as lifetimes and reactivity. We present a new photophysical model based on mixed-spin states, illustrated by relativistic spin–orbit TDDFT and MS-CASPT2 calculations of [Re(imidazole)(CO)3(1,10-phenanthroline)]+. An excited-state scheme is constructed from spin–orbit (SO) states characterized by their energies, double-group symmetries, parentages in terms of contributing spin-free singlets and triplets, and oscillator strengths of corresponding transitions from the ground state. Some of the predictions of the relativistic SO model on the number and nature of the optically populated and intermediate excited states are qualitatively different from the spin-free model. The relativistic excited-state model accounts well for electronic absorption and emission spectra of ReI carbonyl diimines, as well as their complex photophysical behavior. Then, we discuss the SO aspects of photophysics of heavy metal complexes from a broader perspective. Qualitative SO models as well as previous relativistic excited-state calculations are briefly reviewed together with experimental manifestations of SOC in polypyridine and cyclometallated complexes of second- and third row d6 metals. It is shown that the relativistic SO model can provide a comprehensive and unifying photophysical picture.  相似文献   

19.
Thermally activated delayed fluorescence (TADF) based on through‐space donor and acceptor interactions constitute a recent and promising approach to develop efficient TADF emitters. Novel TADF isomers using a dithia[3.3]‐paracyclophane building block as a versatile 3D platform to promote through‐space interactions are presented. Such a 3D platform allows to bring together the D and A units into close proximity and to probe the effect of their orientation, contact site and distance on their TADF emission properties. This study provides evidence that the dithia[3.3]paracyclophane core is a promising platform to control intramolecular through‐space interactions and obtain an efficient TADF emission with short reverse‐intersystem crossing (RISC) lifetimes. In addition, this study demonstrates that this design can tune the energy levels of the triplet states and leads to an upconversion from 3CT to 3LE that promotes faster and more efficient RISC to the 1CT singlet state.  相似文献   

20.
Here, we designed several waterborne polyurethanes (WPUs) with efficient thermally activated delayed fluorescence (TADF) via serving charge‐transfer (CT) states as a mediate bridge between singlet and triplet states to boost reverse intersystem crossing (RISC). By tuning substituents of diphenyl sulfone (DS), we found that O,O′‐ and S,S′‐substituted DS covalently incorporated in WPUs solely show typical fluorescence emission with lifetimes in the nanosecond range. Interestingly, TADF appears by replacing the substituent with the nitrogen atom, of which lifetimes are up to ≈10 microseconds and ≈1 millisecond in air and vacuum, respectively, even though the energy gap between singlet and triplet states (ΔEST) is still large for generating TADF. To explain this phenomenon, an energy level mode based on CT states and an 3(n‐π*) receiver state was proposed. By the rational modulation of CT states, it is possible to tune the ΔEST to render TADF‐based materials suitable for versatile applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号