首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester‐based electrolyte is successfully demonstrated, which enables high‐voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full‐cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high‐voltage lithium metal batteries.  相似文献   

2.
开发高电压正极材料是发展高能量密度锂离子电池的重要途径之一。常规电解液在高电压下容易与正极材料表面发生副反应,影响高电压正极材料性能的发挥,因此,高电压电解液引起了人们广泛的关注。本文主要从新型溶剂体系和常规碳酸酯溶剂体系两方面对锂离子电池高电压电解液进行综述与评价,提出了现有电解液的不足及面临的问题。从电解液溶剂分子设计理论入手,分析了砜类溶剂、腈基溶剂和离子液体等新型溶剂作为高压电解液溶剂的优缺点,同时探讨了不同种类添加剂在常规碳酸酯溶剂体系中的作用机理。此外,本文还介绍了理论计算方法在锂离子电池高电压电解液研究中的应用,并对其在设计新型高电压电解液中的应用前景进行了展望。  相似文献   

3.
Organic/inorganic interfaces greatly affect Li+ transport in composite solid electrolytes (SEs), while SE/electrode interfacial stability plays a critical role in the cycling performance of solid-state batteries (SSBs). However, incomplete understanding of interfacial (in)stability hinders the practical application of composite SEs in SSBs. Herein, chemical degradation between Li6PS5Cl (LPSCl) and poly(ethylene glycol) (PEG) is revealed. The high polarity of PEG changes the electronic state and structural bonding of the PS43− tetrahedra, thus triggering a series of side reactions. A substituted terminal group of PEG not only stabilizes the inner interfaces but also extends the electrochemical window of the composite SE. Moreover, a LiF-rich layer can effectively prevent side reactions at the Li/SE interface. The results provide insights into the chemical stability of polymer/sulfide composites and demonstrate an interface design to achieve dendrite-free lithium metal batteries.  相似文献   

4.
A proof-of-concept study on a liquid/liquid (L/L) two-phase electrolyte interface is reported by using the polarity difference of solvent for the protection of Li-metal anode with long-term operation over 2000 h. The L/L electrolyte interface constructed by non-polar fluorosilicane (PFTOS) and conventionally polar dimethyl sulfoxide solvents can block direct contact between conventional electrolyte and Li anode, and consequently their side reactions can be significantly eliminated. Moreover, the homogeneous Li-ion flow and Li-mass deposition can be realized by the formation of a thin and uniform solid-electrolyte interphase (SEI) composed of LiF, LixC, LixSiOy between PFTOS and Li anode, as well as the super-wettability state of PFTOS to Li anode, resulting in the suppression of Li dendrite formation. The cycling stability in a lithium–oxygen battery as a model is improved 4 times with the L/L electrolyte interface.  相似文献   

5.
Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiNxOy on a working lithium metal anode with dendrite‐free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first‐principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries.  相似文献   

6.
Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at −20 °C and 0.5 mA cm−2, with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm−2) and high-loading LiNi0.8Co0.15Al0.05O2 cathodes (10 mg cm−2) retain 70 % of the initial capacity after 100 cycles at −20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.  相似文献   

7.
The stability of high-energy-density lithium metal batteries depends on the uniformity of solid electrolyte interphase (SEI) on lithium metal anodes. Rationally improving SEI uniformity is hindered by poorly understanding the effect of structure and components of SEI on its uniformity. Herein, a bilayer structure of SEI formed by isosorbide dinitrate (ISDN) additives in localized high-concentration electrolytes was demonstrated to improve SEI uniformity. In the bilayer SEI, LiNxOy generated by ISDN occupies top layer and LiF dominates bottom layer next to anode. The uniformity of lithium deposition is remarkably improved with the bilayer SEI, mitigating the consumption rate of active lithium and electrolytes. The cycle life of lithium metal batteries with bilayer SEI is three times as that with common anion-derived SEI under practical conditions. A prototype lithium metal pouch cell of 430 Wh kg−1 undergoes 173 cycles. This work demonstrates the effect of a reasonable structure of SEI on reforming SEI uniformity.  相似文献   

8.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10?3 S cm?1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.  相似文献   

9.
Li-metal batteries (LMB), although providing high energy density, face the grand challenge of identifying good electrolyte solvents for cycling. Common solvents are either only stable against lithium metal anode or only stable against LiNixMnyCo1-x-yO2 (NMC) cathode. There is significant effort trying to increase the cathode stability for ether electrolytes, which are in general stable against lithium metal anode. In comparison, there is much less effort trying to increase the anode stability of electrolytes that are stable against NMC cathode. One example is the sulfone-based electrolyte. It has good cathode stability but is hindered from practical application because of (1) high viscosity and poor wetting capability and (2) poor anode stability. Here, we solve these issues by modifying the sulfone molecules using resonance and electron withdrawing effect. The viscosity is significantly reduced by delocalizing the electrons through introducing additional oxygen on the molecular backbone and applying appropriate fluorination. The resulting molecule 2,2,2-trifluoroethyl mesylate (TFEM) has decreased Lewis basicity and less reactivity toward Li+. The electrolyte based on TFEM as single solvent enables cycling of LMB under harsh conditions of low N/P ratio (21 mg/cm2 NMC811 and 50 μm Li) with 90 % capacity retention after 160 cycles at C/3 discharge rate.  相似文献   

10.
Electrolyte engineering is crucial for the commercialization of lithium metal batteries. Here, lithium metal is stabilized in the highly reactive sulfolane-based electrolyte under low concentration (0.25 M) for the first time. Inorganic-polymer hybrid solid electrolyte interphase (SEI) with high ionic conductivity, low bonding with lithium and high flexibility enables dense chunky lithium deposition and high plating/stripping efficiency. Low concentration electrolyte (LCE) also enables excellent cycling stability of LiNi0.5Co0.2Mn0.3O2 (NCM523)/Li cells at 1 C (90.7 % retention after 500 cycles) and 0.3 C (83.3 % retention after 1000 cycles). With a low N/P ratio (≈2), the capacity retention for NCM523/Li cells can achieve 94.3 % after 100 cycles at 0.3 C. Exploring the LCE is of paramount significance because it provides more possibilities of the lithium salt selections, especially reviving some lithium salts that are excluded before due to their low solubility. More importantly, LCE has the significant advantage of commercialization due to its cost-effectiveness.  相似文献   

11.
LiNO3 is a remarkable additive that can dramatically enhance the stability of ether-based electrolytes at lithium metal anodes. However, it has long been constrained by its incompatibility with commercially used ester electrolytes. Herein, we correlated the fundamental role of entropy with the limited LiNO3 solubility and proposed a new low-entropy-penalty design that achieves high intrinsic LiNO3 solubility in ester solvents by employing multivalent linear esters. This strategy is conceptually different from the conventional enthalpic methods that relies on extrinsic high-polarity carriers. In this way, LiNO3 can directly interact with the primary ester solvents and fundamentally alters the electrolyte properties, resulting in substantial improvements in lithium-metal batteries with high Coulombic efficiency and cycling stability. This work illustrates the significance of regulating the solvation entropy for high-performance electrolyte design.  相似文献   

12.
The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+. The well-designed eutectic-based PAN1.2-SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm−1 at 30 °C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2-SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm−2, and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6Co0.2Mn0.2O2 pouch cells employing PAN1.2-SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries.  相似文献   

13.
Room temperature ionic liquids (RTILs), especially pyrrolidinium based RTILs with bis(trifluoromethane‐sulfonyl)imide (TFSI) as counterion, are frequently proposed as promising electrolyte component candidates thanks to their high thermal as well as high oxidation stability. In order to avoid a resource intensive experimental approach, mainly based on trial and error experiments, a computational screening method for pre‐selecting suitable candidate molecules was adopted and three homologous series compounds were synthesized by modifying the cation structure of pyrrolidinium RTILs. The obtained high purity RTILs: methyl‐methylcarboxymethyl pyrrolidinium TFSI (MMMPyrTFSI), methyl‐ethylcarboxymethyl pyrrolidinium TFSI (MEMPyrTFSI) and methylpropylcarboxymethyl pyrrolidinium TFSI (MPMPyrTFSI) revealed excellent thermal stabilities higher than 300 °C. Furthermore, MMMPyrTFSI and MPMPyrTFSI exhibit high oxidation stability up to 5.4 V vs. Li/Li+. No aluminum corrosion of current collector was observed at 5 V vs. Li/Li+. In addition to that, these RTILs display a superior salt (LiTFSI) solubility (3.0–3.5 M), compared to the unmodified RTIL 1‐butyl‐1‐methylpyrrolidinium TFSI (Pyr14TFSI) (1.5–2.0 M) at room temperature. All these properties make novel ester modified RTILs promising and interesting candidates for application in rechargeable lithium batteries.  相似文献   

14.
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium‐metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium‐metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid‐electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.  相似文献   

15.
Calcium‐metal batteries (CMBs) provide a promising option for high‐energy and cost‐effective energy‐storage technology beyond the current state‐of‐the‐art lithium‐ion batteries. Nevertheless, the development of room‐temperature CMBs is significantly impeded by the poor reversibility and short lifespan of the calcium‐metal anode. A solvation manipulation strategy is reported to improve the plating/stripping reversibility of calcium‐metal anodes by enhancing the desolvation kinetics of calcium ions in the electrolyte. The introduction of lithium salt changes the electrolyte structure considerably by reducing coordination number of calcium ions in the first solvation shell. As a result, an unprecedented Coulombic efficiency of up to 99.1 % is achieved for galvanostatic plating/stripping of the calcium‐metal anode, accompanied by a very stable long‐term cycling performance over 200 cycles at room temperature. This work may open up new opportunities for development of practical CMBs.  相似文献   

16.
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm−2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.  相似文献   

17.
随着新能源产业和储能产业的快速发展,二次电池的安全性和能量密度要求越来越高.而传统的液态锂电池使用易燃的电解液,所以存在较大的安全隐患.因此固态锂电池由于其较高的安全性和能量密度受到越来越多人的关注.目前困扰固态电池应用的主要问题是其离子电导率和电极电解质界面问题.固态电解质是固态电池的关键材料.因此开发高离子电导率的固态电解质是开发固态电池的关键.在本工作中,作者成功通过旋涂法制备聚乙二醇-聚丙烯腈-聚甲基丙烯酸甲酯(PEO-PAN-PMMA)凝胶电解质.PEO-PAN-PMMA聚合物薄膜为均匀透明的,具有较高的吸附率,且热稳定性较好,在380℃下保持稳定.通过浸泡电解液可以得到性能优异的凝胶电解质.该凝胶电解质具有较高的离子电导率,室温离子电导率为0.4 mS/cm,而且电化学窗口较宽,在0~4.2 V之间化学性能较为稳定,界面稳定性较好.组装成Li//PEO-PAN-PMMA凝胶电解质//LiCoO2电池之后,正极首圈放电容量为129.8 mAh/g,循环100周,正极放电容量剩余119.51 mAh/g,在0.1 C、0.2 C、0.5 C和1 C倍率下循环,正极放电容量分别为129.8 mAh/g,99.5 mAh/g,86.1 mAh/g和64 mAh/g.  相似文献   

18.
Stable Zn anodes with a high utilization efficiency pose a challenge due to notorious dendrite growth and severe side reactions. Therefore, electrolyte additives are developed to address these issues. However, the additives are always consumed by the electrochemical reactions over cycling, affecting the cycling stability. Here, hexamethylphosphoric triamide (HMPA) is reported as an electrolyte additive for achieving stable cycling of Zn anodes. HMPA reshapes the solvation structures and promotes anion decomposition, leading to the in situ formation of inorganic-rich solid-electrolyte-interphase. More interestingly, this anion decomposition does not involve HMPA, preserving its long-term impact on the electrolyte. Thus, the symmetric cells with HMPA in the electrolyte survive ≈500 h at 10 mA cm−2 for 10 mAh cm−2 or ≈200 h at 40 mA cm−2 for 10 mAh cm−2 with a Zn utilization rate of 85.6 %. The full cells of Zn||V2O5 exhibit a record-high cumulative capacity even under a lean electrolyte condition (E/C ratio=12 μL mAh−1), a limited Zn supply (N/P ratio=1.8) and a high areal capacity (6.6 mAh cm−2).  相似文献   

19.
High-energy-density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co-solvents with sustained-release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high-loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm−2), and lean electrolytes (6.1 g Ah−1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg−1 for 60 cycles with lean electrolytes (2.3 g Ah−1).  相似文献   

20.
Lithium batteries employing Li or silicon (Si) anodes hold promise for the next-generation energy storage systems. However, their cycling behavior encounters rapid capacity degradation due to the vulnerability of solid electrolyte interphases (SEIs). Though anion-derived SEIs mitigate this degradation, the unavoidable reduction of solvents introduces heterogeneity to SEIs, leading to fractures during cycling. Here, we elucidate how the reductive stability of solvents, dominated by the electrophilicity (EPT) and coordination ability (CDA), delineates the SEI formed on Li or Si anodes. Solvents exhibiting lower EPT and CDA demonstrate enhanced tolerance to reduction, resulting in inorganic-rich SEIs with homogeneity. Guided by these criteria, we synthesized three promising solvents tailored for Li or Si anodes. The decomposition of these solvents is dictated by their EPTs under similar solvation structures, imparting distinct characteristics to SEIs and impacting battery performance. The optimized electrolyte, 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in N-Pyrrolidine-trifluoromethanesulfonamide (TFSPY), achieves 600 cycles of Si anodes with a capacity retention of 81 % (1910 mAh g−1). In anode-free Cu||LiNi0.5Co0.2Mn0.3O2 (NCM523) pouch cells, this electrolyte sustains over 100 cycles with an 82 % capacity retention. These findings illustrate that reducing solvent decomposition benefits SEI formation, offering valuable insights for the designing electrolytes in high-energy lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号