首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbon quantum dots (CQDs) are a new class of fluorescence small carbon nanoparticles with a particle size of less than 10 nm and have vast applications in the field of bioimaging, biosensing and disease-detection. These are promising materials for nano-biotechnology since it has smaller particle size, excellent biocompatibility and excitation wavelength dependent photoluminescence (PL) behavior, photo induced electron transfer, chemical inertness and low toxicity. These materials have excellent fluorescent properties such as broad excitation spectra, narrow and tunable emission spectra, and high photostability against photo bleaching and blinking than other fluorescent semiconductor quantum dots. This review article demonstrate the recent progress in the synthesis, functionalization and technical applications of carbon quantum dots using electrochemical oxidation, combustion/thermal, chemical change, microwave heating, arc-discharge, and laser ablation methods from various natural resources. Natural carbon sources are used for the preparation of CQDs due to its low cost, environmental friendly and widely available.  相似文献   

3.
随着纳米技术的进步,纳米颗粒正在被逐步应用到法庭科学领域的手印检验之中。近年来,半导体量子点因其良好的荧光特性而备受国内外法庭科学家的推崇,但大多数半导体量子点具有毒性,且会对环境造成污染,这些问题制约了半导体量子点在法庭科学领域中的应用。与传统有机染料和金属内核的半导体量子点相比,碳量子点具有毒性低、污染小、生物相容性优异的特点,现已应用于医学、生物、化学等多个领域。本文综述了半导体量子点在手印显现中的应用,介绍了碳量子点的研究进展,并指出碳量子点显现手印是今后法庭科学领域的重要研究方向。  相似文献   

4.
5.
We report on a disposable microdevice suitable for sandwich-type electrochemiluminescence (ECL) detection of prostate specific antigen (PSA). The method is making use of ZnO quantum dots dotted carbon nanotube (ZnO@CNT) and simply electrochemical reduced Pt/Au alloy. The latter was selected as immunosensing probe to modify screen-printed carbon electrode, due to its excellent electrical property. For further ultrasensitive, low-potential and stable ECL detection, ZnO@CNT composite was first synthesized using a facile solvothermal method, and employed as signal amplification label. In this work, two working electrodes in one device were used for one determination to obtain more exact results based on screen-print technique. Taking advantage of dual-amplification effects of the Pt/Au and ZnO@CNT, this immunosensor could detect the PSA quantitatively, in the range of 0.001–500 ng mL−1, with a low detection limit of 0.61 pg mL−1. The resulting versatile immunosensor possesses high sensitivity, satisfactory reproducibility and regeneration. This simple and specific strategy has vast potential to be used in other biological assays.  相似文献   

6.
Glycerol and urea were used as green and cheap sources of carbon quantum dots (CQD) for modifying Fe3O4 nanoparticles (NPs). The obtained CQD@Fe3O4 NPs were used for the stabilization of palladium species and the prepared catalyst, Pd@CQD@Fe3O4, was characterized using various techniques. This magnetic supported palladium was applied as an efficient catalyst for the reduction of aromatic nitro compounds to primary amines at room temperature using very low palladium loading (0.008 mol%) and also for the Suzuki–Miyaura cross‐coupling reaction of aryl halides as well as challenging heteroaryl bromides and aryl diazonium salts with arylboronic acids and with potassium phenyltrifluoroborate. This magnetically recyclable catalyst was recovered and reused for seven consecutive runs in the reduction of 4‐nitrotoluene to p‐toluidine and for ten consecutive runs in the reaction of 4‐iodoanisole with phenylboronic acid with small decrease of activity. The catalyst reused in the Suzuki reaction was characterized using transmission electron microscopy, vibrating sample magnetometry and X‐ray photoelectron spectroscopy. Using experiments such as hot filtration and poisoning tests, it has been shown that the true catalyst works under homogeneous conditions according to the release–return pathway of active palladium species.  相似文献   

7.
8.
本文采用水热法合成了硫化铅量子点,将其与壳聚糖混合后修饰在玻碳电极上,利用PbS与巯基之间的强烈的键和作用,直接将所合成的带巯基的与可卡因适体互补的DNA固定到电极上,将金纳米颗粒标记在可卡因适体作为示踪物检测可卡因,研制了一种新型的用于快速测定可卡因的适体传感器.该适体传感器与不同浓度的可卡因培育时,可卡因适体与可卡...  相似文献   

9.
Carbon Dots (CDs) are carbon nanoparticles which were discovered in 2004. Despite two decades of intensive work from the scientific community and a colossal amount of gathered experimental data, no definitive consensus exists to date on several key aspects such as the actual definition of CDs and the origin of their emissive properties. This review proposes a critical evaluation of these fundamental questions. Lay persons will also find here an alternative introduction to the CDs domain, including synthetic strategies, photophysical properties, as well as challenges and outlook of this exciting new area.  相似文献   

10.
The preparation of a new nanocomposite by combining zein and quantum dots (QDs) was the main interest of the present work. By the sol-gel method, colloidal ethanolic dispersions of zinc oxide (ZnO) particles and ZnO particles doped with magnesium (II) (ZnO:Mg) were obtained, sized 4.26 and 3.65 nm, respectively, as determined by UV–Vis spectroscopy. The prepared QDs were used as nanofillers in order to obtain zein-based nanocomposite films, which displayed good visual appearance, homogeneity, and transparency. The presence of QDs increased the hydrophobicity and reduced, up to three times, the amount of water uptake of the composite films when compared to pure zein. Those effects were more pronounced for ZnO:Mg QDs. TEM, FTIR, and fluorescence microscopy analysis indicated that zein interacts more effectively with ZnO:Mg than with ZnO. In addition, and most importantly, the presence of QDs in the films showed an important advantage when compared to those of pure zein: the extended UV-blocking in the absorbance spectra. The antimicrobial assays demonstrated that the ZnO NPs, loaded into zein films, are promising antibacterial materials since the inhibition of growth of S. aureus reached (96.5 ± 4.9)% at 44.8 wt% of ZnO NPs. Therefore, the nanocomposites show promising features for the development of food packaging, UV protective films, and for the development of new and sustainable materials.  相似文献   

11.
以易得的苯亚硒酸(BA)和邻苯二胺(o-PDA)作为前体,通过一步水热法成功设计并合成了掺杂硒的碳点(Se-CDs)。制备的Se-CDs发出红色波段的荧光,并被用于开发一种检测microRNA-21(miR-21)的灵敏荧光传感器。通过脱氧核糖核酸酶Ⅰ(DNase Ⅰ)介导的信号放大方法,将miR-21的检测限从78 nmol·L-1改进到了6.8 nmol·L-1。此外,Se-CDs对大肠杆菌等革兰氏阴性菌具有理想的抑制活性。  相似文献   

12.
We report a novel approach for synthesizing CdS and CdSe quantum dots subsectionally sensitized double-layer ZnO nanorods for solar cells, which are comprised of CdS QDs-sensitized bottom-layer ZnO NRs and CdSe QDs-sensitized top-layer ZnO NRs. X-ray diffraction study and scanning electron microscopy analysis indicate that the solar cells of subsectionally sensitized double-layer ZnO NRs, which are the hexagonal wurtzite crystal structure, have been successfully achieved. The novel structure enlarged the range of absorbed light and enhanced the absorption intensity of light. The I-V characteristics show that the double-layer structure improved both the current density (Jsc) and fill factor (FF) by 50%, respectively, and power conversion efficiency (η) was increased to twice in comparison with the CdS QDs-sensitized structure.  相似文献   

13.
14.
以鸡毛和乙二胺为碳源和氮源,通过一步水热法合成强荧光性能的氮掺杂碳量子点(N-CQDs),并优化其制备和掺杂条件.该碳量子点具有良好的光学、结构性质和稳定性,平均粒径7.89 nm,荧光量子产率为14%.最大激发波长为320 nm,最大发射波长为386 nm.Hg2+存在条件下N-CQDs溶液的荧光被碎灭(关),添加百...  相似文献   

15.
以中温煤沥青为碳源,采用HNO3预处理结合球磨过程及双氧水氧化刻蚀的方法制备沥青基荧光碳量子点,以CQDs的收率和荧光量子产率为目标,获得最优制备条件:反应时间6 h、H2O2加入量100 mL (c-CQDs),此时,CQDs收率和荧光量子产率分别为6.3%和11.2%,且尺寸均匀、粒径分布在4-14 nm。延长反应时间至8 h (a-CQDs),碳量子点团聚;H2O2用量增加至120 mL (b-CQDs)则导致碳量子点氧化过度,颗粒小且杂乱无章。对不同条件下所制备的CQDs进行XPS、红外光谱、热重、13C NMR、Raman和晶相分析,探究反应条件对CQDs结构的影响规律。结果表明,就碳含量而言,a-CQDs > b-CQDs > c-CQDs,氧元素含量则为b-CQDs > c-CQDs > a-CQDs。各CQDs结构中C主要以芳碳形式存在,c-CQDs的C=O、O-C=O含量最高,而b-CQDs的C-O含量最高,13C NMR分析发现CQDs中表征平均芳环尺寸大小的Xb约为0.5,相应地,其平均芳环数约为3。  相似文献   

16.
《Mendeleev Communications》2021,31(5):647-650
Carbon quantum dots (CQDs) with an average diameter of 3 nm, exhibiting blue photoluminescence, have been obtained from commercial conductive carbon black by a cost-effective and straightforward exfoliation method using dry ball milling in the presence of sodium carbonate. As a secondary abrasive medium, sodium carbonate provides effective exfoliation of carbon black with a high degree of CQD graphitization and plays an essential role in the functionalization of CQDs with oxygen groups. Due to the low toxicity of CQDs against HeLa cancer cells (cell viability above 90% at a CQD concentration of 200 μg cm−3) and the ability to penetrate cells and emit blue light, CQDs are possibly suitable for biological imaging of cells.  相似文献   

17.
Haghighi B  Bozorgzadeh S 《Talanta》2011,85(4):2189-2193
ZnO nanoparticles (nanoZnO) were decorated on multiwalled carbon nanotubes (MWCNTs) and then the prepared nano-hybrids, nanoZnO-MWCNTs, were immobilized on the surface of a glassy carbon electrode (GCE) to fabricate nanoZnO-MWCNTs modified GCE. The prepared electrode, GCE/nanoZnO-MWCNTs, showed excellent electrocatalytic activity towards luminol electrochemiluminescence (ECL) reaction. The electrode was then further modified with lactate oxidase and Nafion to fabricate a highly sensitive ECL lactate biosensor. Two linear dynamic ranges of 0.01-10 μmol L−1 and 10-200 μmol L−1 were obtained for lactate with the correlation coefficient better than 0.9996. The detection limit (S/N = 3) was 4 nmol L−1 lactate. The relative standard deviation for repetitive measurements (n = 6) of 10 μmol L−1 lactate was 1.5%. The fabrication reproducibility for five biosensors prepared and used in different days was 7.4%. The proposed ECL lactate biosensor was used for determination of lactate in human blood plasma samples with satisfactory results.  相似文献   

18.
一锅法合成了镁掺杂的ZnO量子点, 利用APTES对其进行表面包覆, 并采用XRD、TEM、UV-Vis、PL和FTIR等对材料进行了表征。结果表明镁掺杂能明显增强荧光发光强度, 在合适的掺杂浓度(30%)下其量子产率由11%增加到33%。通过APTES的表面包覆使镁掺杂的ZnO量子点具有良好的水溶性和荧光稳定性, 可用于MCF-7细胞成像研究。  相似文献   

19.
一锅法合成了镁掺杂的ZnO量子点,利用APTES对其进行表面包覆,并采用XRD、TEM、UV-Vis、PL和FTIR等对材料进行了表征。结果表明镁掺杂能明显增强荧光发光强度,在合适的掺杂浓度(30%)下其量子产率由11%增加到33%。通过APTES的表面包覆使镁掺杂的ZnO量子点具有良好的水溶性和荧光稳定性,可用于MCF-7细胞成像研究。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号