首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Summary Cyclin-dependent kinases (CDKs) play a key role in regulating the cell cycle. The cyclins, their activating agents, and endogenous CDK inhibitors are frequently mutated in human cancers, making CDKs interesting targets for cancer chemotherapy. Our aim is the discovery of selective CDK4/cyclin D1 inhibitors. An ATP-competitive pyrazolopyrimidinone CDK inhibitor was identified by HTS and docked into a CDK4 homology model. The resulting binding model was consistent with available SAR and was validated by a subsequent CDK2/inhibitor crystal structure. An iterative cycle of chemistry and modeling led to a 70-fold improvement in potency. Small substituent changes resulted in large CDK4/CDK2 selectivity changes. The modeling revealed that selectivity is largely due to hydrogen-bonded interactions with only two kinase residues. This demonstrates that small differences between enzymes can efficiently be exploited in the design of selective inhibitors.  相似文献   

3.
Cyclin-dependent kinase 2-associated protein 1(CDK2AP1), a cell growth inhibitory factor, is abnormally expressed in cancer cells, and might be implicated in the development of lung cancer. However, no studies on the function of CDK2AP1 in human lung cancer have been yet reported. In this study, overexpressing lentiviral vectors containing full-length CDK2AP1 cDNA and CDK2AP1 shRNA(short hairpin RNA) were constructed. Our results show that infecting A549 cells with lentivirus containing CDK2AP1 shRNA or ful...  相似文献   

4.
Mitochondrial functions are essential for the survival and function of neurons. Recently, it has been demonstrated that mitochondrial functions are highly associated with mitochondrial morphology, which is dynamically changed by the balance between fusion and fission. Mitochondrial morphology is primarily controlled by the activation of dynamin-related proteins including dynamin-related protein 1 (Drp1), which promotes mitochondrial fission. Drp1 activity is regulated by several post-translational modifications, thereby modifying mitochondrial morphology. Here, we found that phosphorylation of Drp1 at serine 616 (S616) is mediated by cyclin-dependent kinase 5 (CDK5) in post-mitotic rat neurons. Perturbation of CDK5 activity modified the level of Drp1S616 phosphorylation and mitochondrial morphology in neurons. In addition, phosphorylated Drp1S616 preferentially localized as a cytosolic monomer compared with total Drp1. Furthermore, roscovitine, a chemical inhibitor of CDKs, increased oligomerization and mitochondrial translocation of Drp1, suggesting that CDK5-dependent phosphorylation of Drp1 serves to reduce Drp1''s fission-promoting activity. Taken together, we propose that CDK5 has a significant role in the regulation of mitochondrial morphology via inhibitory phosphorylation of Drp1S616 in post-mitotic neurons.  相似文献   

5.
6.
In cell development, the cell cycle is crucial, and the cycle progression’s main controllers are endogenous CDK inhibitors, cyclin-dependent kinases (CDKs), and cyclins. In response to the mitogenic signal, cyclin D is produced and retinoblastoma protein (Rb) is phosphorylated due to activated CDK4/CDK6. This causes various proteins required in the cell cycle progression to be generated. In addition, complexes of CDK1-cyclin A/B, CDK2-cyclin E/A, and CDK4/CDK6-cyclin D are required in each phase of this progression. Cell cycle dysregulation has the ability to lead to cancer. Based on its role in the cell cycle, CDK has become a natural target of anticancer therapy. Therefore, understanding the CDK structures and the complex formed with the drug, helps to foster the development of CDK inhibitors. This development starts from non-selective CDK inhibitors to selective CDK4/CDK6 inhibitors, and these have been applied in clinical cancer treatment. However, these inhibitors currently require further development for various hematologic malignancies and solid tumors, based on the results demonstrated. In drug development, the main strategy is primarily to prevent and asphyxiate drug resistance, thus a determination of specific biomarkers is required to increase the therapy’s effectiveness as well as patient selection suitability in order to avoid therapy failure. This review is expected to serve as a reference for early and advanced-stage researchers in designing new molecules or repurposing existing molecules as CDK4/CDK6 inhibitors to treat breast cancer.  相似文献   

7.
CDK2 and CDK4 known promoter of cell cycling catalyze phosphorylation of RB protein. Enzyme specificity between two CDKs that work at a different cell cycle phase is not clearly understood. In order to define kinase properties of CDK2 and CDK4 in complex with cycline A or cycline D1 in relation to their respective role in cell cycling regulation, we examined enzymatic properties of both CDK4/cycline D1 and CDK2/cycline A in vitro. Association constant, Km for ATP in CDK4/cyclin D1 was found as 418 microM, a value unusually high whereas CDK2/cyclin A was 23 microM, a value close to most of other regulatory protein kinases. Turnover value for both CDK4/cyclin D1 and CDK2/cyclin A were estimated as 3.4 and 3.9 min(-1) respectively. Kinetic efficiency estimation indicates far over one order magnitude less efficiency for CDK4/cyclin D1 than the value of CDK2/cycline A (9.3 pM(-1) min(-1) and 170 pM(-1) min(-1) respectively). In addition, inhibition of cellular CDK4 caused increase of cellular levels of ATP, even though inhibition of CDK2 did not change it noticeably. These data suggest cellular CDK4/cyclin D1 activity is tightly associated with cellular ATP concentration. Also, analysis of phosphorylated serine/threonine sites on RB catalyzed by CDK4/cyclin D1 and CDK2/cyclin A showed significant differences in their preference of phosphorylation sites in RB C-terminal domain. Since RB is known to regulate various cellular proteins by binding and this binding is controlled by its phosphorylation, these data shown here clearly indicate significant difference in their biochemical properties between CDK4/cyclin D1 and CDK2/cyclin A affecting regulation of cellular RB function.  相似文献   

8.
Cyclin-Dependent Kinases (CDKs) are known to play crucial roles in controlling cell cycle progression of eukaryotic cell and inhibition of their activity has long been considered as potential strategy in anti-cancer drug research. In the present work, a series of porphyrin-anthraquinone hybrids bearing meso-substituents, i.e. either pyridine or pyrazole rings were designed and computationally evaluated for their Cyclin Dependent Kinase-2 (CDK2) inhibitory activity using molecular docking, molecular dynamics simulation, and binding free energy calculation. The molecular docking simulation revealed that all six porphyrin hybrids were able to bind to ATP-binding site of CDK2 and interacted with key residues constituted the active cavity of CDK2, while molecular dynamics simulation indicated that all porphyrins bound to CDK2 were stable for 6 ns. The binding free energies predicted by MM-PBSA method showed that most compounds exhibited higher affinity than that of native ligand (4-anilinoquinazoline, DTQ) and the affinity of mono-H2PyP-AQ was about three times better than that of DTQ, indicating its potential to be advanced as a new CDK2 inhibitor.  相似文献   

9.
Cyclin-dependent kinase 2 (CDK2) is a key macromolecule in cell cycle regulation. In cancer cells, CDK2 is often overexpressed and its inhibition is an effective therapy of many cancers including breast carcinomas, leukemia, and lymphomas. Quantitative characterization of the interactions between CDK2 and its inhibitors at atomic level may provide a deep understanding of protein-inhibitor interactions and clues for more effective drug discovery. In this study, we have used the computational alanine scanning approach in combination with an efficient interaction entropy method to study the microscopic mechanism of binding between CDK2 and its 13 inhibitors. The total binding free energy from the method shows a correlation of 0.76?0.83 with the experimental values. The free energy component reveals two binding mode in the 13 complexes, namely van der Waals dominant, and electrostatic dominant. Decomposition of the total energy to per-residue contribution allows us to identify five hydrophobic residues as hot spots during the binding. Residues that are responsible for determining the strength of the binding were also analyzed.  相似文献   

10.
Cyclin-dependent kinases 4 and 6 inhibitors(CDK4/6i) have been demonstrated to trigger antitumor immunity for tumor regression. However, the therapeutic performance of CDK4/6i-meadiated cancer immunotherapy was impaired by the immunosuppressive tumor microenvironment(ITM) due to overexpression of programmed death ligand 1(PD-L1) on the surface of cancer cell membrane. To improve the immunotherapeutic performance of CDK4/6i, we herein developed endosomal acidactivatable micelleplex for si RNA delivery and PD-L1 knockdown in the tumor cells in vitro and in vivo. We further demonstrated that the combination of PD-L1 knockdown and CDK4/6 inhibition facilitated intratumoral infiltration of cytotoxic T lymphocytes(CTLs), and elicited protective immune response and efficiently suppressed tumor growth in vivo. This study revealed the importance of molecular design of the micelleplex for highly efficient si RNA delivery, which might provide a novel insight for RNAi-based cancer immunotherapy.  相似文献   

11.
12.
Cyclin dependent kinases (CDKs) have recently raised considerable attention because of their central role in the regulation of cell cycle progression. A high incidence of genetic mutation of CDK substrates and deregulation of CDK modulators were found in a number of disease states, particularly in cancer. A novel series of unsymmetrical substituted indolocarbazoles were synthesized and their kinase inhibitory capability was evaluated in vitro. 6-Substituted indolocarbazoles were found to b…  相似文献   

13.
Cyclin‐dependent kinases 4 and 6 (CDK4/6) are key regulators of the cell cycle, and there are FDA‐approved CDK4/6 inhibitors for treating patients with metastatic breast cancer. However, due to conservation of their ATP‐binding sites, development of selective agents has remained elusive. Here, we report imide‐based degrader molecules capable of degrading both CDK4/6, or selectively degrading either CDK4 or CDK6. We were also able to tune the activity of these molecules against Ikaros (IKZF1) and Aiolos (IKZF3), which are well‐established targets of imide‐based degraders. We found that in mantle cell lymphoma cell lines, combined IKZF1/3 degradation with dual CDK4/6 degradation produced enhanced anti‐proliferative effects compared to CDK4/6 inhibition, CDK4/6 degradation, or IKZF1/3 degradation. In summary, we report here the first compounds capable of inducing selective degradation of CDK4 and CDK6 as tools to pharmacologically dissect their distinct biological functions.  相似文献   

14.
根据细胞周期依赖性激酶7(CDK7)的蛋白结构, 利用Discovery Studio 2.1程序包中的LigandFit模块建立了CDK7抑制剂的分子对接模型, 采用受试者工作特征曲线(ROC)方法选择LigScore2为最佳打分函数(ROC曲线下的面积为0.95), 并验证了该模型的准确性. 利用该模型对设计的化合物与CDK7蛋白进行对接分析, 得到了2个打分最高的化合物16、17, 进而通过13步的合成路线, 以中等至高的收率得到目标化合物, 并测定其体外抗肿瘤活性. 结果表明, 所合成的化合物对急性前髓细胞性白血病细胞(HL60)、鼻咽癌细胞(KB)、肝肿瘤细胞(SMMC-7721)、结肠腺癌细胞(HCT-116)、肺癌细胞(A549)细胞株均有抑制作用(IC50值为0.84-19.70 μmol·L-1), 其中化合物16对HL60细胞株的IC50值最低, 为0.84 μmol·L-1.  相似文献   

15.
16.
The CDK family plays a crucial role in the control of the cell cycle. Dysregulation and mutation of the CDKs has been implicated in cancer and the CDKs have been investigated extensively as potential therapeutic targets. Selective inhibition of specific isoforms of the CDKs is crucial to achieve therapeutic effect while minimising toxicity. We present a group of photoaffinity probes designed to bind to the family of CDKs. The site of crosslinking of the optimised probe, as well as its ability to enrich members of the CDK family from cell lysates, was investigated. In a proof of concept study, we subsequently developed a photoaffinity probe‐based competition assay to profile CDK inhibitors. We anticipate that this approach will be widely applicable to the study of small molecule binding to protein families of interest.  相似文献   

17.
《中国化学快报》2023,34(4):107741
Cyclin-dependent kinases (CDKs) have become potential targets for treating various diseases, especially cancer. Compound iCDK9 is an excellent and selective CDK9 inhibitor, but its major limitation is the potential toxicity and poor understanding of the underlying mechanism. The PROTAC (proteolysis targeting chimera) degraders of bioactive molecules can significantly induce in vitro and in vivo degradation of their target protein with high selectivity and effectively reduce the dose-limiting toxicity of small molecule drugs. Therefore, we designed and synthesized the bifunctional PROTAC molecules of iCDK9, being used for identifying its previously unknown target and revealing the underlying pharmacological mechanism. The PROTAC bifunctional molecule CD-5 could selectively and significantly degrade CDK9 with low cell toxicity. Therefore, we selected CD-5 as a chemical prober in the SILAC quantitative proteomic analysis, which disclosed that CD-5 could enormously lessen the lysine acetyltransferase KAT6A. Furthermore, KAT6A degradation induced by CD-5 repressed the levels of H3K14Ac and H3K23Ac. Lastly, the streptavidin immunoprecipitation (IP) assay confirmed a direct interaction between KAT6A and iCDK9. Collectively, our results uncover that KAT6A is a potential non-kinase target of iCDK9. Notably, this study also demonstrates that the PROTAC-SILAC strategy is an alternative approach for cellular target identification of bioactive molecules.  相似文献   

18.
CDK2-抑制剂结合自由能计算   总被引:3,自引:0,他引:3  
蒋勇军  曾敏  周先波  邹建卫  俞庆森 《化学学报》2004,62(18):1751-1754
细胞周期蛋白依赖性激酶Ⅱ(cyclin-dependent kinase 2,CDK2)是一种重要的治疗癌症的靶标.本文中采用分子动力学取样,运用MM-PBSA/GBSA两种方法计算了CDK2-NU6102复合物的绝对结合自由能.通过能量分解的方法考察了CDK2大分子主要残基与配体NU6102之间的相互作用和识别.  相似文献   

19.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal form of cancer characterized by drug resistance, urging new therapeutic strategies. In recent years, protein kinases have emerged as promising pharmacological targets for the treatment of several solid and hematological tumors. Interestingly, cyclin-dependent kinase 1 (CDK1) is overexpressed in PDAC tissues and has been correlated to the aggressive nature of these tumors because of its key role in cell cycle progression and resistance to the induction of apoptosis. For these reasons, CDK1 is one of the main causes of chemoresistance, representing a promising pharmacological target. In this study, we report the synthesis of new 1,2,4-oxadiazole compounds and evaluate their ability to inhibit the cell growth of PATU-T, Hs766T, and HPAF-II cell lines and a primary PDAC cell culture (PDAC3). Compound 6b was the most active compound, with IC50 values ranging from 5.7 to 10.7 µM. Molecular docking of 6b into the active site of CDK1 showed the ability of the compound to interact effectively with the adenosine triphosphate binding pocket. Therefore, we assessed its ability to induce apoptosis (which increased 1.5- and 2-fold in PATU-T and PDAC3 cells, respectively) and to inhibit CDK1 expression, which was reduced to 45% in Hs766T. Lastly, compound 6b passed the ADME prediction, showing good pharmacokinetic parameters. These data demonstrate that 6b displays cytotoxic activity, induces apoptosis, and targets CDK1, supporting further studies for the development of similar compounds against PDAC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号