首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal carboxylate complexes possess different carboxylate coordination modes, e.g. monodentate, bidentate, and bridging bidentate. Five Zn(II) complexes were prepared and characterized in order to examine their coordination modes in addition to their biological activity. The syntheses were started by preparation of [Zn(ibup)2(H2O)2] (1). Then, different nitrogen-donor ligands reacted with 1 to produce [Zn(ibup)2(2-ampy)2] (2), [Zn(ibup)(2-ammethylpy)] (3), [Zn(ibup)(2,2′-bipy)] (4), and [Zn2(ibup)4(2-methylampy)2] (5) (ibup = ibuprofen, 2-ampy = 2-aminopyridine, 2-ammethylpy = 2-aminomethylpyridine, 2,2′-bipy = 2,2′-bipyridine, 2-methylampy = 2-(methylamino)pyridine). IR, 1H NMR, 13C{1H}-NMR and UV–vis spectroscopies were used for characterization. The crystal structures of 2 and 5 were determined by single-crystal X-ray diffraction. Investigation of in vitro antibacterial activities for the complexes against Gram-positive (Micrococcus luteus, Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis) bacteria were done using agar well-diffusion method. Complex 1 showed antibacterial activity against Gram-positive bacteria. Complexes 2 and 3 did not exhibit antibacterial activity. Complex 4 showed antibacterial activity and was chosen for further studies to determine the inhibition zone diameter for different concentrations and to set the minimum inhibitory concentration. The antibacterial activity against most of the bacteria was minimized as a result of the complexation of zinc ibuprofen with 2,2′-bipy in 4.  相似文献   

2.
In search for antitumor metal-based drugs that would mitigate the severe side-effects of cisplatin, Ru(II) complexes are gaining increasing recent interest. In this work, we report on the synthesis, characterization (1H- and 13C-NMR, FT-IR), and cytotoxicity studies of two new half-sandwich organometallic Ru(II) complexes of the general formula [Ru(η6-arene)(XY)Cl](PF6) where arene?=?benzene or toluene and XY?=?bidentates: dipyrido[3,2-a:2′,3′-c]phenazine (dppz) or 2-(9-anthryl)-1H-imidazo[4,5-f][1,10]phenanthroline (aip), which are bound to Ru(II) via two phenanthroline-N atoms in a characteristic “piano-stool” configuration of Ru(II)-arene complexes—as confirmed by vibrational and NMR spectra. In addition, cytotoxic studies were performed for similar half-sandwich organometallic [Ru(η6-p-cymene)(Me2dppz)Cl]PF6 complex (Me2dppz = 11,12-dimethyl-dipyrido[3,2-a:2′,3′-c]phenazine). This study is complemented with elaborate modeling with density functional theory (DFT) calculations, which provided insight into reactive sites of Ru(II) structures, further detailed by molecular docking on the B-DNA dodecamer, which identified binding sites and affinities: most pronounced for the [Ru(η6-benzene)(aip)Cl](PF6) in both A-T and G-C regions of the DNA minor groove. Cytotoxic activity was probed versus tumor cell lines B16, C6, and U251 (B16 mouse melanoma, C6 rat glioma, U251 human glioblastoma) and non-tumor cell line HACAT (HACAT normal human keratinocytes).  相似文献   

3.
Mononuclear transition metal(II) complexes of the type M(L)2?2H2O (where M = Co, Ni, Cu, Zn) have been synthesized from uninegative Schiff base ligands (HL1–HL4) designed by condensation of 4‐fluorobenzylamine with 2‐hydroxy‐1‐naphthaldehyde/3,5‐dichlorosalicylaldehyde/3,5‐dibromosalicylaldehyde/3‐bromo‐5‐chlorosalicylaldehyde. The compounds were successfully characterized using spectroscopic and physiochemical methods together with elemental analysis. Spectroscopic elucidation indicates a monobasic bidentate nature of ligands coordinated via deprotonated phenolic oxygen and azomethine nitrogen atom which suggests an octahedral geometry around the central metal ions. The complexes and ligands were screened for their in vitro antimicrobial activity against bacterial and fungal strains, the zinc(II) complexes being more active against the tested microbial strains. Further, the metal complexes were found to be more active than the uncomplexed ligands due to chelation process and, moreover, the complexes were more active against fungal strains than bacterial strains. Cytotoxic activities of all compounds were evaluated towards human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and one normal human lung cell line (MRC‐5) using MTT colorimetric assay with doxorubicin as a standard. The zinc complexes were most active against the cancer cell lines and also found to be less toxic against MRC‐5 normal cell line than standard doxorubicin.  相似文献   

4.
Abstract

A one pot procedure was used to synthesize two new derivatives of α-aminophosphonates. Novel copper(II) complexes of α-aminophosphonates were synthesized by coordinating different copper salts with the newly synthesized α-aminophosphonates. Their structures were characterized by different spectral and analytical techniques. Evaluation of the metal-free ligands HL1, HL2, and their Cu(II) complexes against human colon carcinoma HT-29 cell lines was performed, using cisplatin as a reference drug. The results indicated that the complexes of the ligand HL1 exhibited enhanced anticancer activity, while ligand HL2 complexes showed decreased anticancer activity.  相似文献   

5.
Two new potentially octadentate N2O6 Schiff-base ligands 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)phenoxy)phenylimino)methyl)-6-methoxyphenol H2L1 and 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)-4-tert-butylphenoxy)phenylimino)methyl)-6-methoxyphenol H2L2 were prepared from the reaction of O-Vaniline with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. Reactions of H2L1 and H2L2 with copper(II) and zinc(II) salts in methanol in the presence of N(Et)3 gave neutral [CuL1]?·?0.5CH2Cl2, [CuL2], [ZnL1]?·?0.5CH2Cl2, and [ZnL2] complexes. The complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, ESI–MS spectra, molar conductance (Λm), UV-Vis spectra and, in the case of [ZnL1]?·?0.5CH2Cl2 and [ZnL2], with 1H- and 13C-NMR. The crystal structure of [ZnL1]?·?0.5CH2Cl2 has also been determined showing the metal ion in a highly distorted trigonal bipyramidal geometry. The electrochemical behavior of H2L2 and its Cu(II) complex, [CuL2], was studied and the formation constant of [CuL2] was evaluated using cyclic voltammetry. The logarithm value of formation constant of [CuL2] is 21.9.  相似文献   

6.
Six new derivatives of ciprofloxacin compounds and their copper(II) complexes were synthesized, characterized by spectroscopic methods (ultraviolet–visible [UV–vis], Fourier transform infrared [FTIR], nuclear magnetic resonance [NMR], mass spectrometry [MS], and electron paramagnetic resonance [EPR]), and tested for antibacterial activities against gram-negative and gram-positive bacteria. The data showed that ciprofloxacin derivatives act as bidentate ligands and the metal ions coordinate through the pyridone carbonyl and the carboxylate oxygen atoms. Tetragonally distorted octahedral ligand fields were assumed for all complexes based on their spectral studies. Copper(II) complexes of the synthesized ciprofloxacin derivatives revealed higher antibacterial activities against gram-positive and gram-negative bacterial species than the parent ciprofloxacin antibiotic. Furthermore, three-dimensional quantitative structure–activity relationship (3D-QSAR) models were evaluated by studying 30 antibiotic compounds of the quinolone class. Density function theory (DFT) calculations were applied to evaluate the optimized geometrical structures using the B3LYP method and 6-311G(d,p) basis set. The 3D-QSAR study revealed that there are eight optimum parameters that give the best predictive modulation with good reliability (R2 = 0.996, F = 12.004, sigma = 0.426). In silico molecular docking was also performed on the derivatives, and the results revealed the presence of two types of interactions between the Escherichia coli and the derivatives, H-bonding and Van der Waals interactions, and an effective inhibition at the docked site.  相似文献   

7.
8.
Two two‐dimensional supramolecular copper(II) and cobalt(III) complexes, Cu(L1)2 ( 1 ; HL1 = 2‐hydroxy‐3‐methoxybenzaldehyde oxime) and [Co(L2)2]2⋅2CH3COOCH2CH3 ( 2 ; HL2 = 1‐(2‐{[(E )‐3‐methoxy‐2‐hydroxybenzylidene]amino}phenyl)ethanone oxime), have been synthesized via complexation of Cu(II) nitrate trihydrate and Co(II) acetate tetrahydrate with HL. A plausible reaction mechanism for the formation of HL1 is proposed. HL was synthesized and characterized using infrared, 1H NMR and 13C NMR spectra, as well as elemental analysis. Complexes 1 and 2 were investigated using single‐crystal X‐ray diffraction and have a 2:1 ligand‐to‐metal ratio. Different geometric features of both complexes are observed. In their crystal structures, 1 and 2 form infinite two‐dimensional structures and 2 forms a three‐dimensional supramolecular framework. Electron paramagnetic resonance spectra of 1 and 2 were also investigated. Moreover, thermal and electrochemical properties and antimicrobial activity of 2 were also studied. In addition, the calculated HOMO and LUMO energies show the character of complex 1 .  相似文献   

9.
The coordination of ruthenium(II) complexes to anionic oxygen-based donors are very rare. This study describes a simple, one-pot method for obtaining [ruthenium(II)(trithiacyclononane)(curcumin)(S-DMSO)]Cl (1) in 37% yield. The structural characterization of complex 1 by elemental analysis, FT-IR, 1-D and 2-D NMR, ESI+-MS as well as UV–vis and fluorescence spectroscopies are presented. The DNA-melting temperature (Tm) assay shows that salmon sperm DNA (smDNA) in the presence of complex 1 has a higher melting temperature, with ΔTm = 7.4 °C, while in the presence of curcumin the melting temperature remains unaltered. The in vitro cytotoxic activities of curcumin and complex 1 were investigated using the tumor human prostate cell line, PC-3, and the healthy cell line, PNT-2. Complex 1 is innocuous toward normal prostate epithelial cells and, whereas curcumin is toxic, with inhibition rates of ca. 35 and 65% at 50 and 80 μM, respectively. On the tumor cell line PC-3, complex 1 did not cause viability changes, whereas curcumin exhibited dose-dependent inhibition, with ca. 73% inhibition at the highest concentration tested, i.e. 80 μM. This study suggests that coordination with the trithiacyclononane ruthenium(II) scaffold stabilizes the photochemical properties of curcumin and strongly changes its biologic activity.  相似文献   

10.
Three new heteroscorpionate ligands, (2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL1), (4‐diethylamino‐2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL2) and (5‐bromo‐2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL3), and their heteroleptic copper(II) complexes of the type [Cu(L1–3)diimine]ClO4 ( 1 – 6 ; where diimine =2,2′‐bipyridyl or 1,10‐phenanthroline) have been synthesized and characterized using spectroscopic methods. The molecular structure of ligand HL1 was determined by single‐crystal X‐ray diffraction. UV–visible, electron paramagnetic resonance and theoretical studies suggest a distorted square pyramidal geometry around copper(II) ion. Analyses of highest occupied and lowest unoccupied molecular orbitals have been used to explain the charge transfer taking place within the complexes. The antioxidant activities of the heteroscorpionate ligands and their heteroleptic copper(II) complexes were determined using ABTS, DPPH and H2O2 free radical scavenging assays with respect to standard antioxidant ascorbic acid. In molecular docking studies, the complexes showed π–π, hydrogen bonding, van der Waals and electrostatic interactions with fibroblast growth factor receptor kinase. In vitro cytotoxicity activities of ligands and copper(II) complexes were examined on human breast adenocarcinoma (MCF‐7), cervical (HeLa) and lung (A549) cancer cell lines and normal human dermal fibroblast cell line using MTT assay. Complex 4 exhibited higher anticancer activity than the other complexes against all three cancer lines, being more potent than the standard drug cisplatin.  相似文献   

11.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
An intercalative ligand, ppip (ppip = {2-(4-(piperidin-1-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}), and its mononuclear Ru(II) polypyridyl complexes, [Ru(phen)2(ppip)]2+ (1) (phen=1,10-phenanthrolene), [Ru(bpy)2(ppip)]2+ (2) (bpy=2,2′-bipyridine) and [Ru(dmb)2(ppip)]2+ (3) (dmb=4,4′-dimethyl-2,2′-bipyridine), have been synthesized and characterized by elemental analysis and spectroscopic techniques such as UV–vis, IR, 1H, as well as 13C NMR and ESI-MS. The interaction of these complexes with DNA/BSA (bovine serum albumin) was investigated using absorption, emission spectroscopy, viscosity measurements and molecular docking studies. The docking study infers that the binding strength (Kb) of these complexes was in agreement with results from absorption and emission techniques. These studies reveal that these three Ru(II) polypyridyl complexes bind to DNA/BSA. The binding ability of these complexes in the presence of different ions and solvents were also reported. All complexes were effectively cleaving pBR322 DNA in different forms and follows order which is similar to absorption and emission studies. These complexes were effective exhibiting the antimicrobial activity against different microbes Bacillus subtilis, Escherichia coli and Staphylococcus aureus.  相似文献   

13.
Transition Metal Chemistry - A new set of copper- and zinc-diamine (N-alkylated (L1) and N,N'-dialkylated (L2)) complexes, [Cu(L1)2(NO3)2] (1), [Cu(L1)2(Cl)2].5H2O (2), [Cu(L2)2(NO3)2] (3),...  相似文献   

14.
《Thermochimica Acta》2001,370(1-2):29-36
The thermal properties of four copper(II) complexes with N,N′,N″,N-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and several bidentate ligands N,S (thiosemicarbazide and thiourea) or N,O donors (semicarbazide and urea), of the general formula [Cu2(X)tpmc](ClO4)4, have been investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). The thermal stability order can be recognized for the examined complexes, depending on coordinated bidentate bridging N,S or N,O ligand. Kinetic data demonstrated first-order thermal decomposition. A plausible mechanism has been proposed which explains the major products of the degradation.  相似文献   

15.
New homologous series of coumarin Schiff base derived from 6-aminocoumarin and their zinc(II) complexes have been synthesised. The spectroscopic characterisations, photophysical properties, phase transition temperature, characterisation of phase and gelation behaviour are reported. The ligand is non-mesogenic at lower 4-n-alkoxy chain length (n = 4) and mesogenic for longer chains (n > 4). For small chains (n = 5, 7, 8), ligand displays monotropic nematic or nematic-smectic A phase sequences, whereas longer homologues (n = 12, 14, 16 and 18) display only enantiotropic smectic A phase. The ligands and their Zn(II) complexes are fluorescent in nature. Interestingly, ligands exhibit gelation property only in polar solvents, whereas Zn(II) complexes discourage gelation. The effect of 4-n-alkoxy chain length on the gelation properties was also discussed. Density functional theory calculations show broad agreement with observed molecular conformation, dipole moment, molecular orbitals and polarisability of the coumarin Schiff base molecules and their Zn(II) complexes.  相似文献   

16.
A new series of twelve bidentate Schiff's base ligands (HL1–12) was synthesized via condensation of 5‐(arylazo)salicylaldehydes with aromatic amines. When the new salicylaldimine derivatives were reacted with copper(II) chloride, the neutral complexes Cu(L1–12)2 were obtained. The structure of the copper complexes was established from microanalyses, IR and UV spectra and thermal analyses. The results suggested that the ligands were coordinated to the metal ion in a bidentate manner with ON donor sites of the deprotonated phenolic‐OH and azomethine‐N. The composition of the complexes can be represented as CuL2. Evaluation of antimicrobial activity for the synthesized compounds was carried out to probe their activity. The compounds were found to have weak antimicrobial activity.  相似文献   

17.
Among all the bio‐metals, zinc and copper derivatives of ONS donor thiosemicarbazone have aroused great interest because of their potential biological applications. Multisubstituted thiosemicarbazone ligand H2dspt (3,5‐dichlorosalicylaldehyde‐N4‐phenylthiosemicarbazone) derived new ternary complexes like [Zn(dspt)(phen)]?DMF ( 1 ) and [Cu(dspt)(phen)]?DMF ( 2 ), and another thiosemicarbazone, H2dsct (3,5‐dichlorosalicylaldehyde‐N4‐cyclohexylthiosemicarbazone), derived [Cu(dsct)(bipy)]?DMF ( 3 ). These complexes have been characterized by elemental analysis (CHNS), Fourier transform infrared (FT‐IR), ultraviolet–visible (UV–Vis) and proton nuclear magnetic resonance (1H‐NMR) spectra. The structures of the complexes were obtained by single‐crystal X‐ray diffraction analysis. Compounds 1 and 2 got crystallized in the monoclinic P21/c space group. The complexes showed interesting supramolecular interaction, which in turn stabilizes the complexes. The ground state electronic configurations of the complexes were studied using the B3LYP/LANL2DZ basis set, and ESP plots of complexes were investigated. The interaction of the complexes with calf thymus DNA (CT‐DNA) was studied using absorption and fluorescence spectroscopic methods. A UV study of the interaction of the complexes with calf thymus DNA (CT‐DNA) has shown that the complexes can effectively bind to CT‐DNA, and [Cu(dspt)(phen)]·DMF ( 2 ) exhibited the highest binding constant to CT‐DNA (Kb = 3.7 × 104). Fluorescence spectral studies also indicated that Complex 2 binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (Kq = 4.7 × 105). The DNA cleavage result showed that the complexes are capable of cleaving the DNA without the help of any external agent. Molecular docking studies were carried out to understand the binding of complexes with the molecular target DNA. Complex 2 exhibited the highest cytotoxicity against human breast cancer cell line MD‐MBA‐231 (IC50 = 23.93 μg/mL) as compared to Complex 1 (IC50 = 44.40 μg/mL) .  相似文献   

18.
Heterobimetallic complexes of Cu[Tl(SCN)2]2 ·; L (where L?=?acetophenone benzoylhydrazone(abh), acetophenone isonicotinoyl hydrazone(ainh), acetophenone salicyloylhydrazone(ash), acetophenone anthraniloyl hydrazone(aah), p-hydroxy acetophenone benzoylhydrazone (phabh), p-hydroxy acetophenone isonicotinoyl hydrazone (phainh), p-hydroxy acetophenone salicyloylhydrazone(phash) and p-hydroxy acetophenone anthraniloyl hydrazone(phaah) were synthesized and characterized. Electronic spectra and μeff values suggest a distorted octahedral environment around copper(II). SCN groups bridge between two metal centers and the ligands are coordinated through >C=O and >C=N–groups. Thermal studies (TGA and DTA) on Cu[Tl(SCN)2]2?·?ainh indicate multi step decomposition of both endothermic and exothermic nature. ESR data show axial spectra for all the complexes and d x²???y 2 as the ground state. Powder X-ray diffraction parameters for some of the complexes correspond to orthorhombic crystal lattice. The complexes show significant antifungal activity against Rizoctonia sp. and Stemphylium sp. and moderate antibacterial activity against Clostridium sp. and Pseudomonas sp. The activity increases at higher concentration of the compound.  相似文献   

19.
Mononuclear copper(II) complexes of a family of pyridylmethylamide ligands HL, HLMe, HLPh, HLMe3 and HLPh3, [HL = N-(2-pyridylmethyl)acetamide; HLMe = N-(2-pyridylmethyl)propionamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide], were synthesized and characterized. The reaction of copper(II) salts with the pyridylmethylamide ligands yields complexes [Cu(HL)2(OTf)2] (1), [Cu(HLMe)2](ClO4)2 (2), [Cu(HL)2Cl]2[CuCl4] (3), [Cu(HLMe3)2(THF)](OTf)2 (4), [Cu(HLMe3)2(H2O)](ClO4)2 (5a and 5b), [Cu(HLPh3)2(H2O)](ClO4)2 (6), [Cu(HL)(2,2′-bipy)(H2O)](ClO4)2 (7), and [Cu(HLPh)(2,2′-bipy)(H2O)](ClO4)2 (8). All complexes were fully characterized, and the X-ray structures vary from four-coordinate square-planar, to five-coordinate square-pyramidal or trigonal-bipyramidal. The neutral ligands coordinate via the pyridyl N atom and carbonyl O atom in a bidentate fashion. The spectroscopic properties are typical of mononuclear copper(II) species with similar ligand sets, and are consistent their X-ray structures.  相似文献   

20.
The synthesis, spectral characterization, and biological studies of ruthenium(II) hydrazone complexes [RuCl(CO)(PPh3)2L] (where L = hydrazone ligands) have been carried out. The hydrazones are monobasic bidentate ligands with O and N as the donors and are preferably found in the enol form in all the complexes. The molecular structure of the ligands HL1, HL2, and HL3 were determined by single-crystal X-ray diffraction. The DNA binding studies of the ligands and complexes were carried out by absorption spectroscopic and viscosity measurements. The results revealed that the ligands and complexes bind to DNA via intercalation. The DNA cleavage activity of the complexes, evaluated by gel electrophoresis assay, revealed that the complexes are good DNA cleaving agents. The antioxidant properties of the complexes were evaluated against DPPH, OH, and NO radicals, which showed that the complexes have strong radical-scavenging. Further, the in vitro cytotoxic effect of the complexes examined on HeLa and MCF-7 cancer cell lines showed that the complexes exhibited significant anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号