首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Headspace nanofiber sheet microextraction together with GC–MS and chemometrics resolution techniques were implemented to separate and identify the volatiles emitted by intact marjoram (Origanum majorana L.) and their relative concentrations. A novel polyaniline‐nylon‐6 nanofiber composite was applied for headspace microextraction. Characteristics such as high surface‐to‐volume ratio and π–π functional groups in polyaniline together with the NH and C=O functional groups in nylon‐6 make the polyaniline‐nylon‐6 nanofiber composite a suitable candidate for the extraction of volatiles and semivolatiles. The extracted constituents were desorbed and injected into the GC–MS system under the optimum conditions. Chemometric resolution techniques were utilized to solve the baseline offset, asymmetric peaks, and overlapped peaks problems that arise from GC–MS analysis. By means of these techniques and resolving the overlapped peak clusters, the number of identified constituents was increased to 67 compounds. The major released constituents from the intact marjoram leaves are 4‐terpineol, β‐linalool, cis‐sabinol, and trans‐geraniol.  相似文献   

2.
This study was conducted to examine the chemical constituents of Origanum majorana L. essential oils (EOs) that originate in Nepal, as well as their biological activities, antioxidant properties, and enantiomeric compositions. The EOs were extracted by the hydro-distillation method using a Clevenger-type apparatus and their chemical compositions were determined through gas chromatography and mass spectrometry (GC-MS). Chiral GC-MS was used to evaluate the enantiomeric compositions of EOs. The minimum inhibitory concentrations (MICs) of the essential oils were determined by the micro-broth dilution method, and the antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl scavenging assay and ferric-reducing antioxidant power (FRAP). GC-MS analysis showed the presence of 50 and 41 compounds in the EO samples, (S1) and (S2), respectively, representing the Kathmandu and Bhaktapur districts. The oxygenated monoterpenoids, along with terpinen-4-ol, were predominant constituents in both EO samples. However, the EOs from two locations showed some variations in their major components. The chiral terpenoids for two EO samples of marjoram have also been reported in this study in an elaborative way for the first time in accordance with the literature review. A hierarchical cluster analysis based on the compositions of EOs with 50 compositions reported in the literature revealed at least 5 different chemotypes of marjoram oil. The antioxidant activity for the sample (S2) was found to be relatively moderate, with an IC50 value of 225.61 ± 0.05 μg/mL and an EC50 value of 372.72 ± 0.84 µg/mL, as compared to the standard used. Furthermore, with an MIC value of 78.1 µg/mL, the EO from sample (S2) demonstrated effective antifungal activity against Aspergillus niger and Candida albicans. Moreover, both samples displayed considerable antimicrobial activity. The results suggest that EOs of Origanum majorana possess some noteworthy antimicrobial properties as well as antioxidant activity, and hence can be used as a natural preservative ingredient in the food and pharmaceutical industries.  相似文献   

3.
In the search of new alternatives for weed control, spices appear as an option with great potential. They are rich in bioactive natural products and edible, which might minimize toxicity hazard. Marjoram (Origanum majorana L.) is an aromatic herb that has been widely employed as a seasoning herb in Mediterranean countries. Although marjoram boasts a plethora of therapeutic properties (painkiller, antibiotic, treatment for intestinal disorders, etc.), the potential for its extracts for weed control is still to be more thoroughly explored. In order to determine their phytotoxic potential, marjoram leaves were subjected to different bioguided extraction processes, using water, ethyl acetate, acetone or methanol. The most active extract (acetone) was sequentially fractionated to identify its most active compounds. This fractionation led to the isolation and identification of 25 compounds that were classified as monoterpenes, diterpenes or flavonoids. Among them, a new compound named majoradiol and several compounds are described in marjoram for the first time. The phytotoxicity of the major compounds to etiolated wheat coleoptiles was compared against that of the commercial herbicide (Logran®), with similar or higher activity in some cases. These results confirm the extraordinary potential of the extracts from this edible plant to develop safer and more environmentally friendly herbicides.  相似文献   

4.
This study aimed to investigate the effect of the maturation process of sweet marjoram (Origanum majorana L.) on essential oil composition, the phenolic profile of ethanolic extract and their antioxidant capacities. The essential oil composition was studied at three stages of maturity by GC–MS. Thirty compounds were detected representing 100% of the total essential oil. p‐Menth‐1‐en‐4‐ol was the major compound (37.15–76.94%) followed by cyclohexanol‐3,3,5 trimethyl (5.41–15.99%) and α‐terpineol (0.94–11.34%). During the maturation process, an accumulation of oxygenated monoterpenes was observed. The phenolic composition was studied using matrix‐assisted laser desorption/ionization time of flight. The analysis showed the presence of short flavonoid monomers at all stages of maturation. The antioxidant capacity of ethanolic extracts and essential oils was evaluated using the DPPH assay, iron chelating power and reducing power assay. The highest phenolic content and antioxidant capacity were found at flowering stage. These findings on essential oil composition, phenolic profile and antioxidant capacity of O. majorana at three different stages of development provide more information on how these secondary metabolites are accumulated.  相似文献   

5.
Origanum majorana L. is a plant commonly used in folk medicine to treat depression and several neurological disorders. This study aims to evaluate the antidepressant-like effect of the Origanum majorana L. polyphenols (OMP) obtained from the aerial parts using two different depression model tests: The forced swimming test (FST) and the tail suspension test (TST) in Swiss albino mice. The experiments were performed on days 1, 7, 14, and 21 with daily administration of different treatments. Two different doses were chosen for this study (50 and 100 mg/kg), and paroxetine was used as a positive control. Immobility as a consequence of the depression state was significantly reduced following the treatment with OMP, indicating an antidepressant effect. A subacute toxicity study was also performed following the Organization for Economic Co-operation and Development (OECD) Guidelines (407), showing no sign of toxicity for the studied doses. The phytochemical screening revealed the presence of 12 components, all belonging to polyphenols: Arbutin, rosmarinic acid, ursolic acid, quercetin-3-O-glucoside, quercetin-7-O-glucuronic acid, luteolin-7-O-glucoside, kaempferol-3-0-glucuronic acid, Kaempferol-3-0-pentose, caffeic acid, catechin, quercetin, and rutin. These findings suggest that O. majorana has interesting antidepressant-like properties, which deserve further investigation.  相似文献   

6.
Zinc oxide nanoparticles have attracted significant interest in recent years due to their unique multifunctional chemical and physical properties along with their biological activities. This study demonstrated for the first time the biogenetic synthesis of zinc oxide nanoparticles by utilization of the methanolic extract of Hypericum triquetrifolium (HT). The obtained nanoparticles (HT-ZnO) were characterized by ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The shape of the resulted nanoparticles is fusiform nanoflowers with an average hydrodynamic size of 275.46 ± 0.20 nm and a zeta potential of −8.23 ± 0.26 mV. SEM micrographs revealed that HT-ZnO nanoflowers have a multi-process structure in which one of the processes is large and the others have similar smaller dimensions. The synthesized nanoflowers have an average length of 312.28 ± 78.93 nm and the tip of its processes has a width of 48.69 ± 9.71 nm. The antimicrobial activity of HT-ZnO nanoflowers was performed using microbroth dilution format. It showed a bactericidal mode of action against Gram-positive Staphylococcus aureus and Enterococcus faecalis with MIC/MBC values of 20 μg/mL and 5 μg/mL, respectively. MTT assay had revealed that HT-ZnO nanoflowers caused a dose-dependent decline in the viability of A549 adenocarcinomic human alveolar basal epithelial cells with an IC50 value of 20.45 μg/mL. The effect of HT-ZnO nanoflowers on the migration and colony formation abilities against the same cells was evaluated as well. In conclusion, zinc oxide nanoflowers were successfully synthesized using methanolic extract of H. triquetrifolium. The resulting particles showed a bactericidal effect against Gram-positiveS. aureus and E. faecalis and a cytotoxic activity against A549 cells.  相似文献   

7.
《印度化学会志》2023,100(2):100917
The aim of this study was to examine the environmentally friendly green production of zinc oxide nanoparticles (ZnO NPs) utilizing Oldenlandia Umbellata (OU) leaves extract, as well as to study the photo catalytic and biological activities of these particles. XRD, UV-Visible, FT-IR, SEM, EDAX, TEM and Zeta potential studies were used to investigate the purity and properties of as synthesized ZnO NPs. From the FT-IR investigations presenting functional groups were verified. The hexagonal form and wurtzite crystal nature were confirmed by SEM and XRD photographs. The decreasing zeta potential of ?23.7 mV suggested the stability of OU-ZnO NPs, which was validated by Zeta potential and EDAX measurements. The OU-ZnO NPs' photo catalytic activity was also examined using their methylene red dye degradation potential. It also has a DPPH test that revealed it had a 66% radical scavenging activity. Furthermore, this substance was proven to be an effective anti-fungal agent against Candida albicans, which demonstrated a maximum mycelial inhibition of 12.5 ± 0.7. Additionally, the biosynthesized nanoparticles had high antibacterial activity verses all of the microbiological strains tested to varying degrees.  相似文献   

8.
An elementary and ecological method has been designed for the biosynthesis of palladium nanoparticles, through the utilization of aqueous extract of red tea (Hibiscus sabdariffa L.) as a reducing and stabilizing agent. The nanoparticles obtained were characterized through UV–visible spectroscopy, transmission election microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning election microscopy, energy‐dispersive X‐ray analysis and inductively coupled plasma analysis. The nanoparticles with spherical shape and dimensions of approximately 10 nm were used as a heterogeneous catalyst for Suzuki coupling reactions under mild conditions. The high efficiency of the catalytic reaction was affirmed by the good yields of products, easy work‐up, absence of palladium leached from the support and smooth recovery of catalyst.  相似文献   

9.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   

10.
Superhydrophobic cerium oxide film was introduced to aluminum substrate by an in‐situ growth process and surface modification. Different molar ratios between Ce(NO3)3 · 6H2O and C6H12N4 were involved in this research. The morphologies, chemical compositions and wetting properties of the films were analyzed by scanning electron microscopy (SEM), energy dispersive X‐ray detector, Fourier transfer infrared spectrometer and water contact angle (WCA) measurement, respectively. A great WCA of 158.8o with a low angle hysteresis of about 3o was obtained. Combination of uniform hierarchical micro‐nanostructure as revealed by SEM together with the hydrophobic alkyl groups from stearic acid was found to be responsible for the superior superhydrophobic property. The corrosion resistance performance of the superhydrophobic surface was evaluated by immersing in sodium chloride aqueous solution, the WCA kept as high as 152.1o after immersion for 21 days, indicating our superhydrophobic surfaces had high chemical stability and durability in corrosive medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Origanum vulgare L. samples, marketed in different geographic locations, were characterized by their organic and inorganic chemical composition. A total of 35 commercial samples were collected from various sites and analyzed to determine the qualitative and quantitative profile of essential oils, phenolic compounds and some inorganic elements. The variation in the content and composition of the essential oil was assessed by GC and GC-MS analyses, the phenolic fraction was investigated by UPLC®/PDA, and the inorganic elements were determined by ICP-MS. The Principal Component Analysis (PCA) was applied with the aim to sort out the Origanum vulgare L. samples with different composition according to the different belonging origins. The results showed appreciable qualitative and quantitative differences among samples from different geographic origin.  相似文献   

12.
《Analytical letters》2012,45(15):2861-2875
Abstract

A method based on capillary electrophoresis with electrochemical detection (CE‐ED) has been developed for the first time for the separation and determination of isovanillic acid, vanillic acid, quercetin, rosmarinic acid, caffeic acid, and protocatechuic acid in Origanum vulgare L. and its medicinal preparations. The effects of working electrode potential, pH level, concentration of running buffer, separation voltage, and injection time on CE‐ED were investigated. Under the optimum conditions, the analytes could be separated in a 50 mmol L?1 borate buffer (pH 8.7) within 21 min. A 300‐µm diameter carbon disk electrode has a good response at +0.95 V (vs. SCE) for all analytes. The response was linear over three orders of magnitude with detection limits (S/N=3) ranging from 4×10?8 g mL?1 to 2×10?7 g mL?1 for the analytes. The method has been successfully applied to the analysis of real sample, with satisfactory results.  相似文献   

13.
The silver nanoparticles (AgNPs) synthesized using hot water olive leaf extracts (OLE) as reducing and stabilizing agent are reported and evaluated for antibacterial activity against drug resistant bacterial isolates. The effect of extract concentration, contact time, pH and temperature on the reaction rate and the shape of the Ag nanoparticles are investigated. The data revealed that the rate of formation of the nanosilver increased significantly in the basic medium with increasing temperature. The nature of AgNPs synthesized was analyzed by UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis (TGA). The silver nanoparticles were with an average size of 20–25 nm and mostly spherical. The antibacterial potential of synthesized AgNPs was compared with that of aqueous OLE by well diffusion method. The AgNPs at 0.03–0.07 mg/ml concentration significantly inhibited bacterial growth against multi drug resistant Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). This study revealed that the aqueous olive leaf extract has no effect at the concentrations used for preparation of the Ag nanoparticles. Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future.  相似文献   

14.
The present study investigates the green synthesis of stable silver nanoparticles using Juniperus communis leaf aqueous extract at room temperature. Synthesized silver nanoparticles (AgNPs) were characterized with different techniques such as UV–vis spectroscopy, Fourier transforms infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM-EDAX) and electrochemical method. Photocatalytic and anti-bacterial activities of synthesized AgNPs are evaluated based on the obtained result showed an efficient inhibition growth for gram negative P. Aeruginosa, E. Coli, and gram positive bacteria S.aureus. The AgNPs exhibited an excellent photocatalytic activity toward the degradation of methylene blue both indoor and outdoor, under sunlight, an efficiency of 95% was achieved. As an easy and environmentally friendly process, AgNPs based on Juniperus communis leaf extract could be applied for the degradation of pollutants and wastewater treatment.  相似文献   

15.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   

16.
The aim of our study was to increase the extraction efficiency of carvacrol, rosmarinic, oleanolic and ursolic acid from the different species of oregano herbs (Origanum onites L., Origanum vulgare spp. hirtum and Origanum vulgare L.). Various extraction methods (ultrasound-assisted, heat-reflux, continuous stirring, maceration, percolation) and extraction conditions (different solvent, material:solvent ratio, extraction temperature, extraction time) were used, and the active substances were determined by HPLC. The lowest content of carvacrol, rosmarinic, oleanolic and ursolic acid was obtained by percolation. During heat-reflux extraction, the content of active substances depended on the solvent used: ethanol/non-aqueous solvent (glycerol or propylene glycol) mixture was more effective compared with ethanol alone. The results showed that for each species of oregano the most optimal extraction method should be selected to maximize the content of biologically active substances in the extracts.  相似文献   

17.
According to chemotherapeutic properties of medicinal plants, pharmacologists have always tried to synthesize and formulate the new chemotherapeutic supplements or drugs of metallic nanoparticles using plants. In this study, Camellia sinensis leaf aqueous extract-based gold nanoparticles (AuNPs) are reported for the first time to exert a dietary therapeutic potential compared to Daunorubicin in an animal model of acute myeloid leukemia. The synthesized AuNPs were characterized using different techniques including UV-Vis., FT-IR spectroscopy, TEM, EDS, FE-SEM, and XRD. DPPH free radical scavenging test was done to evaluate the antioxidant potentials of HAuCl4, C. sinensis, AuNPs, and daunorubicin. For the analyzing of cytotoxicity effects of HAuCl4, C. sinensis, AuNPs, and daunorubicin, MTT assay was used on HUVEC, Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines. In vivo design, induction of acute myeloid leukemia was done by 7,12-Dimethylbenz[a]anthracene (DMBA) in 75 mice. Then, the animals were randomly divided into six subgroups, including control, untreated, HAuCl4, C. sinensis, AuNPs, and daunorubicin. FTIR findings suggested antioxidant compounds in the nanoparticles were the sources of reducing power, reducing gold ions to AuNPs. SEM and TEM images exhibited a uniform spherical morphology and diameters of ~20-30 nm for the nanoparticles. DPPH test revealed similar antioxidant potentials for daunorubicin and AuNPs. These nanoparticles similar to daunorubicin had low cell viability dose-dependently against Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines without any cytotoxicity on HUVEC cell line. AuNPs similar to daunorubicin, significantly (p≤0.05) increased the anti-inflammatory cytokines and the lymphocyte, platelet, and RBC parameters and decreased the weight and volume of liver and spleen, the pro-inflammatory cytokines, and the total WBC, blast, neutrophil, monocyte, eosinophil, and basophil counts, as compared to the untreated mice. According to the above results, it appears that AuNPs can be used as a chemotherapeutic drug for the treatment of acute myeloid leukemia in the clinical trial.  相似文献   

18.
Treatment of microbial infections and inflammatory conditions have many challenges in terms of efficacy and safety issues. Novel approaches such as nanoparticles based drug delivery system have shown promising results to solve some of these problems. The aim of this study was to exploit the efficacy of the synthesized silver nanoparticles. In this study, silver nanoparticles (AgNPs) were biosynthesized using root extract (aqueous) of Duchesnea indica. They were characterized using different techniques such as, ultraviolet–visible (UV–Vis) spectrophotometry, transmission and scanning electron microscopy (TEM and SEM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDX), fourier-transform infrared spectroscopy (FTIR) and zetasizer. The UV–Vis spectra gave a characteristic peak at 423 nm; XRD confirmed its crystalline structure; FTIR confirmed the involvement of phytochemicals in their capping and reduction; TEM images confirmed their spherical shape with average width of 20.49 nm and average area of 319.25 nm2. Various biological activities were performed on these NPs, such as antimicrobial, anti-inflammatory, analgesic and muscle relaxant, which showed significant results as follow. Among bacterial strains, Salmonella typhi (MIC: 0.01 mg/ml) and Escherichia coli (MIC: 0.01 mg/ml), while among that of fungal Microsporum canis (MIC: 0.53 mg/ml) and Alternaria alternata (MIC: 0.51 mg/ml) were most susceptible. The AgNPs showed maximum anti-inflammatory activity (46.15 and 56.85%) at 20 mg/kg after 3 and 5 h of drug administration, comparable to that of standard. In-vivo model exhibited concentration dependent inhibition of both COX-2 and 5-LOX enzymes. Similarly, it exhibited maximum analgesic activity (54.24%) at 20 mg/kg dose after 60 min. of pain induction. Furthermore, they depicted maximum muscle relaxation (P < 0.01) after 60 and 90 min of drug administration. Above results suggest that these AgNPs can be studied further for the development of more effective and safe formulations.  相似文献   

19.
There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as electronics, catalysis, chemistry, energy, and medicine. Recently, researchers have tried to synthesize the chemotherapeutic drugs from metallic nanoparticles especially gold and silver nanoparticles. In the current study, silver nanoparticles using Spinacia oleracea L. leaf aqueous extract (AgNPs) are reported for the first time to exert a dietary remedial property compared to doxorubicin in an animal model of acute myeloid leukemia. The synthesized AgNPs were characterized using different techniques including UV-Vis., EDS, TEM, FT-IR, and FE-SEM. UV-Vis. indicates an absorption band at 462 nm that is related to the surface plasmon resonance of AgNPs. In EDS, metallic silver nanocrystals indicated an optical absorption peak at roughly 4keV. TEM and FE-SEM images exhibited a uniform spherical morphology and diameters of 20–40 nm for the nanoparticles. FT-IR findings suggested antioxidant compounds in the nanoparticles were the sources of reducing power, reducing silver ions to AgNPs. In vivo design, induction of acute myeloid leukemia was done by 7,12-Dimethylbenz[a]anthracene in 75 mice. Then, the animals were randomly divided into six subgroups, including control, untreated, AgNO3, S. oleracea, AgNPs, and doxorubicin. Similar to doxorubicin, AgNPs significantly (p ≤ 0.01) reduced the pro-inflammatory cytokines, and the total WBC, blast, neutrophil, monocyte, eosinophil, and basophil counts and increased the weight of the body, the anti-inflammatory cytokines and the lymphocyte, platelet, and RBC parameters as compared to the untreated mice. DPPH free radical scavenging test was done to evaluate the antioxidant potentials of AgNO3, S. oleracea, AgNPs, and doxorubicin. DPPH test revealed similar antioxidant potentials for doxorubicin and AgNPs. For the analyzing of cytotoxicity effects of AgNO3, S. oleracea, AgNPs, and doxorubicin, MTT assay was used on HUVEC, Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines. AgNPs similar to doxorubicin had low cell viability dose-dependently against Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines without any cytotoxicity on HUVEC cell line. These results reveal that the inclusion of S. oleracea leaf aqueous extract improves the remedial effects of AgNPs, which led to a significant enhancement in the antioxidant, cytotoxicity, and anti-acute myeloid leukemia potentials of the nanoparticles. It seems that AgNPs can be applied as a chemotherapeutic supplement or drug for the treatment of acute myeloid leukemia in the clinical trial.  相似文献   

20.
ABSTRACT

We reported a green and simple method for biosynthesizing zinc oxide nanoparticles (ZnO NPs) using Corymbia citriodora leaf extract as reducing and stabilizing agent. SEM, EDX, XRD, UV–VIS spectroscopy, Raman spectroscopy and TGA have been used for characterizing the biosynthesized ZnO NPs. The results indicating the ZnO NPs synthesized by C. citriodora leaf extract have high purity and the average size is 64?nm. The photocatalytic activity of the ZnO NPs has been investigated by degradation methylene blue under visible light irradiation. Due to the smaller size, the biosynthesized ZnO NPs showed an excellent photocatalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号