首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 137 毫秒
1.
锂层状氧化物LiNi0.6Co0.2Mn0.2O2(NCM622)是电动汽车高能锂离子电池中最有前途的正极材料之一。然而,目前NCM622的一个问题是其初始库仑效率(ICE)只有约87%,比LiCoO2或LiFePO4至少低6%。在本工作中,我们研究了在烧结过程中形成的表面化学残留物(如LiOH和Li2CO3)和Li/Ni阳离子混排对ICE的影响。结果表明,当烧结温度从825 oC提高到900 oC时,样品的ICE从80.80%提高到86.68%,而相应的Li/Ni阳离子混排和表面化学残留物也有所减少。进一步地,我们使用HNO3溶液洗涤去除825 oC烧结后的样品的表面残留物,发现尽管Li/Ni阳离子紊乱有所增加,但ICE提高3.57%。这些结果表明,通过适当的烧结工艺和后处理技术将表面残留量和Li/Ni阳离子混排降至最低是获得高ICE并改善NCM622电化学性能的关键。  相似文献   

2.
采用共沉淀-高温固相烧结的方法合成了富镍正极材料LiNi0.6Co0.2Mn0.2O2(简称NCM622),通过X射线粉末衍射(XRD)/Rietveld精修法、扫描电子显微镜(SEM)及电化学测试,对不同温度下合成材料的结构、形貌、电化学性能进行表征. 结果表明,800℃下,NCM622阳离子混排程度最低(~1.97%),首圈库伦效率高达92.2%,100圈容量保持率为81.4%.  相似文献   

3.
王京玥  王睿  王诗琦  王立帆  詹纯 《电化学》2022,28(8):2112131
高镍层状正极材料因其比容量高进而满足电动汽车的续航要求,是锂离子电池中占主导地位的正极材料之一。通常,商业化的高镍层状氧化物是由共沉淀前驱体合成的,而在共沉淀过程中需要对温度、 pH、 搅拌速率等条件的精确控制,以确保镍、钴和锰等阳离子的原子级混合。本文采用了简单的一步固相法成功合成了超高镍含量的层状氧化物材料。通过使用与目标产物具有相似层状结构的前驱体氢氧化镍,成功合成了LiNiO2和LiNixCoyO2 (x = 0.85, 0.9, 0.95; x + y = 1),其电化学性能可与共沉淀前驱体制备的高镍材料相媲美。通过XRD和XPS测试证实了Co掺杂到LiNiO2中,并抑制了高镍氧化物中的锂镍混排。掺杂剂Co在提高高镍材料的放电容量、倍率性能和循环性能方面具有明显的优势。一步固相法为未来制备下一代高性能超高镍锂离子正极材料提供了一种简单有效制备方法。  相似文献   

4.
With a theoretical capacity of 847 mAh g−1, Sn has emerged as promising anode material for sodium-ion batteries (SIBs). However, enormous volume expansion and agglomeration of nano Sn lead to low Coulombic efficiency and poor cycling stability. Herein, an intermetallic FeSn2 layer is designed via thermal reduction of polymer-Fe2O3 coated hollow SnO2 spheres to construct a yolk-shell structured Sn/FeSn2@C. The FeSn2 layer can relieve internal stress, avoid the agglomeration of Sn to accelerate the Na+ transport, and enable fast electronic conduction, which endows quick electrochemical dynamics and long-term stability. As a result, the Sn/FeSn2@C anode exhibits high initial Coulombic efficiency (ICE=93.8 %) and a high reversible capacity of 409 mAh g−1 at 1 A g−1 after 1500 cycles, corresponding to an 80 % capacity retention. In addition, NVP//Sn/FeSn2@C sodium-ion full cell shows outstanding cycle stability (capacity retaining rate of 89.7 % after 200 cycles at 1 C).  相似文献   

5.
采用常规的固相反应法结合机械球磨制备了含碳质量分数23.7%的Li2Ni2(MoO43@C复合材料,并应用于锂离子电池负极。与纯Li2Ni2(MoO43相比,Li2Ni2(MoO43@C具有优异的电化学性能,在电流密度为200 mA·g-1时,50周循环后,可逆容量高达845 mAh·g-1。值得注意的是,Li2Ni2(MoO43@C的首周库仑效率高达85%。此外,运用循环伏安法对Li2Ni2(MoO43@C复合物存储锂行为进行了初步探索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号