首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
New anthracene based Schiff base ligands L 1 and H( L 2 ), their Cu(II) complexes [Cu( L 1 )Cl2] ( 1 ) and [Cu( L 2 )Cl] ( 2 ) , (where L 1  = N1,N2bis(anthracene‐9‐methylene)benzene‐1,2‐diamine, L 2  = (2Z,4E)‐4‐(2‐(anthracen‐9‐ylmethyleneamino)phenylimino)pent‐2‐en‐2‐ol) have been prepared and characterized by elemental analysis, NMR, FAB‐mass, EPR, FT‐IR, UV–Vis and cyclic voltammetry. The electronic structures and geometrical parameters of complexes 1 and 2 were analyzed by the theoretical B3LYP/DFT method. The interaction of these complexes 1 and 2 with CT‐DNA has been explored by using absorption, cyclic voltammetric and CD spectral studies. From the electronic absorption spectral studies, it was found that the DNA binding constants of complexes 1 and 2 are 8.7 × 103 and 7.0 × 104 M?1, respectively. From electrochemical studies, the ratio of DNA binding constants K+/K2+ for 2 has been estimated to be >1. The high binding constant values, K+/K2+ ratios more than unity and positive shift of voltammetric E1/2 value on titration with DNA for complex 2 suggest that they bind more avidly with DNA than complex 1 . The inability to affect the conformational changes of DNA in the CD spectrum is the definite evidences of electrostatic binding by the complex 1 . It can be assumed that it is the bulky anthracene unit which sterically inhibits these complexes 1 and 2 from intercalation and thereby remains in the groove or electrostatic. The complex 2 hardly cleaves supercoiled pUC18 plasmid DNA in the presence of hydrogen peroxide. The results suggest that complex 2 bind to DNA through minor groove binding.  相似文献   

2.
(E)-2-(2-hydroxybenzylideneamino)isoindoline-1,3-dione (Hbid) was prepared by condensation of N-aminophthalimide and salicylaldehyde and characterized by elemental analysis, IR, 1H-NMR, and mass spectral studies. Mononuclear complexes [(phen)CuII(μ-Hbid)2H2O] (1), [(phen)CoII(Cl)2(μ-Hbid)]6H2O (2) (phen?=?1,10-phenanthroline) and binuclear complexes [CuII(μ-Hbid)]2 (3), and [CoII(μ-Hbid)]2 (4) with Hbid were prepared and characterized by elemental analysis, IR, UV-Vis, molar conductance, and thermogravimetric (TG) techniques. DNA-binding properties of 14 were investigated by UV spectroscopy, fluorescence spectroscopy, and viscosity measurements. The results suggest that 1 and 2 bind to DNA by partial intercalation, whereas 3 and 4 find different groove-binding sites. The cleavage of these complexes with super coiled pUC19 has been studied using gel electrophoresis; all the complexes displayed chemical nuclease activity in the absence and presence of H2O2 via an oxidative mechanism. Complexes 14 inhibit the growth of both Gram-positive and Gram-negative bacteria.  相似文献   

3.
Pyrazolone derivatives (Z)-4-((2-hydroxyethylimino)(p-tolyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one [PMP-EA] (1), (Z)-1-(3-chlorophenyl)-4-((2-hydroxyethylimino)(p-tolyl)methyl)-3-methyl-1H-pyrazol-5(4H)-one [MCPMP-EA] (2), and (Z)-4-((2-hydroxyethylimino)(p-tolyl)methyl)-3-methyl-1-p-tolyl-1H-pyrazol-5(4H)-one [PTPMP-EA] (3) have been synthesized and characterized. The molecular geometry of 2 has been determined by single-crystal X-ray study. These ligands exist in amine-one tautomeric form in the solid state. Three copper(II) complexes, [Cu(PMP-EA)(H2O)2] (4), [Cu(MCPMP-EA)(H2O)2] (5), and [Cu(PTPMP-EA)(H2O)2] (6), respectively, have been synthesized using these ligands and characterized by microanalytical data, molar conductivity, IR, UV–Visible, FAB-Mass, magnetic measurement, TG-DTA studies, and ESR spectral studies; Cu(II) is five-coordinated with [ML(H2O)2] composition. The interaction of the complexes with CT-DNA (calfthymus) was investigated using different methods. The results suggest that the copper complexes bind to DNA via intercalation and can quench the fluorescence intensity of EB bound to DNA.  相似文献   

4.
A new series of DNA binding 5,10,15-tri(N-methyl-4-pyridiniumyl)porphyrin (TrisMPyP)-platinum(II) conjugates was synthesized, in which different spacer ligands were used for appropriate coordination to platinum(II) complexes. Compound 9b exhibited in vivo antitumor activity (T/C%, 294) superior to cisplatin (T/C%, 184) against the leukemia L1210 cell line.  相似文献   

5.
Investigation of N-heterocycle transition metal complexes has led to the discovery of metal-based antitumor agents. Herein, two binuclear complexes, [Cu(p-4-bmb)(Ac)2]2 (1) and [Co(p-4-bmp)Cl2]2 (2), were prepared and characterized. The interactions of 1 and 2 with calf thymus (CT)-DNA and bovine serum albumin (BSA) were detected by absorbance and emission spectroscopy. The complexes bind to CT-DNA via an intercalative mode and show moderate affinity to BSA. Both complexes exhibited remarkable DNA cleavage activity. The MTT assay demonstrated that 1 exhibited higher cytotoxicity against three human alimentary system carcinoma cell lines compared to 2. Further, a cellular uptake assay demonstrated that 1 can accumulate in the nucleus and mitochondria of SMMC7721 cells to induce DNA damage and mitochondrial dysfunction. Fluorescence staining and flow cytometry analyses revealed that 1 can induce cell death by apoptosis. These findings should promote the development of benzimidazole-based transition metal complexes as novel chemotherapy agents with fewer side effects than conventional antitumor drugs.  相似文献   

6.
The synthesis and characterization of a water-soluble mononuclear Cu(II) complex, [CuLCl2]·2CH3CH2OH, where L = bis(2-quinolinyl methyl)benzyl-amine has been reported. L is a tridentate polyquinolinyl ligand, coordinated to Cu(II) via NNN donors. The central copper ion of 1 has N3Cl2 donor set in a distorted trigonal-bipyramidal geometry. The dimer existing in the solid state resulted from hydrogen bonds and ππ accumulation between two mononuclear units. The interaction of 1 with CT-DNA has been explored by absorption and emission titration methods, revealing partial intercalation between 1 and CT-DNA. Moreover, 1 could make pBR322 plasmid DNA cleaved by a self-activated oxidative process; hydroxyl radical and singlet oxygen may be the main reactive oxygen species species in the process. Complex 1 may quench the intrinsic fluorescence of bovine serum albumin in a static quenching process, which has been investigated by UV–visible and fluorescence spectroscopic methods. 1 also demonstrates potent cytotoxity against Hela cells with IC50 value of 2.84 μM, which shows it to be a potential candidate as an anticancer metal-based drug.  相似文献   

7.
8.
Two isomeric Zinc (II) complexes constructed by 3,5‐bis(1‐imidazoly) pyridine has been synthesized and characterized by single crystal X‐ray diffraction, elemental analyses and infrared spectroscopy. The binding mode and ability of complex 1–2 with CT‐DNA were studied by UV and fluorescence spectra. The intrinsic binding constant Kb (Kb1 = 2.305 × 104 M?1, Kb2 = 3.095 × 104 M?1) and the observed association constant Kobs (Kobs1 = 1.523*106 M?1, Kobs2 = 2.057*106 M?1) indicated that the insertion ability of complex 2 with CT‐DNA is stronger than complex 1. Gel electrophoresis showed that complexes have a good ability to hydrolyze cleavage pBR322 plasmid DNA. The cytotoxicity and apoptosis studies showed that complexes exhibited excellent cytotoxic activity against HeLa cells, especially complex 2 had better growth inhibition than Cisplatin. Molecular docking study simulated the binding model of complexes with DNA (PDB:4av1), showing an imidazole plane of complex 2 can be inserted into a DNA base pair in relative parallel. Both complexes can be used as potential anticancer agents.  相似文献   

9.
The ternary complexes of [CuII(Hist)(Tyr)]+1 and [CuII(Hist)(Trp)]+2 have been synthesized, structurally characterized and their DNA binding and cleavage abilities probed. The intrinsic binding constants (Kb) for complexes/CT-DNA were also determined (Kb = 2.7 × 102 for complex 1 and Kb = 2.2 × 102 for complex 2). These complexes exhibit their nuclease activity on plasmid DNA, which seems to depend on the nature of the aromatic moiety. The DNA hydrolytic cleavage rate constants were also determined for complexes 1 and 2, which are 0.91 and 0.79 h−1, respectively.  相似文献   

10.
Reliable compounds with low toxicity are tempting potential chemotherapeutics. With an aim of achieving less toxic but more potent metallodrugs, four new‐generation hydrophilic Cu(II) and Zn(II) complexes with DNA‐targeting properties were synthesized and characterized using various physicochemical data. The excellent DNA binding and cleavage results confirmed the mode of binding of DNA with the complexes and their ability to denature it. The profound in vitro cytotoxicity exhibited by complex 3 against a panel of cell lines (HeLa, MCF‐7 and HepG‐2) along with NHDF (normal human dermal fibroblasts) with distinct activity towards HepG‐2 and low toxicity to NHDF prompted in vivo studies of induced hepatocellular carcinoma‐affected Swiss albino rats. On evaluating various serum hepatic, biological and histopathological parameters, complex 3 showed excellent activity in restoring the damaged liver to normal. As a means of identifying the pathway of DNA damage, flow cytometric evaluation of cell cycle analysis was performed, which revealed S phase arrest‐induced apoptosis in HepG‐2 cells by complex 3 , making it a cell cycle‐specific drug.  相似文献   

11.
A series of new complexes of oxovanadium(IV) [VO(L)(B)] and ruthenium(II) [Ru(CO)(PPh3)2(L)] ( 1.1- 1.3,  2.1–2.3 ) (H2L = dehydroacetic acid Schiff base of S‐methyldithiocarbazate, H2smdha ( 1 ) or S‐benzyldithiocarbazate, H2sbdha ( 2 ); B = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen)) have been synthesized. The structure of these complexes was authenticated using elemental analyses and spectroscopic techniques, and their magnetic properties and electrochemical behaviour were studied. The molecular structures of oxovanadium(IV) complexes [VO(smdha)(bpy)]?CH2Cl2 ( 1.1 ) and [VO(sbdha)(phen)]?2H2O ( 2.2 ) were confirmed using single‐crystal X‐ray crystallography. Analytical data showed that the ligands 1 and 2 are chelated to the metal centres in a bi‐negative tridentate fashion through azomethine N, thiol S and deprotonated hydroxyl group. The antioxidant activity of the synthesized compounds was tested against 2,2‐diphenyl‐1‐picrylhydrazyl) radical, which showed that the complexes demonstrate a better scavenging activity than their corresponding ligands. The cupric ion reducing antioxidant capacity method was also employed and the total equivalent antioxidant capacity values were found to be higher for the oxovandium(IV) complexes. DNA binding affinity of the compounds was determined using UV–visible and fluorescence spectra, revealing an intercalation binding mode. Higher cytotoxicity for the complexes compared to their ligands was found against human liver hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF7) cell lines using MTT assay.  相似文献   

12.
Abstract

Two mononuclear heteroleptic copper complexes, [Cu(±trans-dach)(bpy)](ClO4)2 1a and [Cu(±trans-dach)(phen)](ClO4)2 2a [dach?=?1,2-diaminocyclohexane, bpy?=?2,2′-bipyridine and phen?=?1,10-phenanthroline], were synthesized and analyzed by CHN analysis, electronic absorption, FT-IR spectroscopy, EPR, and SXRD. The molecular structures of 1a and 2a showed octahedral geometry around Cu(II). Both complexes interacted with phosphoesters and DNA. Their binding affinities with diphenylphosphate, di n-butylphosphate, trimethylphosphate, and triphenylphosphate were studied by UV–vis spectroscopy. For understanding the stereochemical role of dach ligand toward DNA interaction, enantiopure DACH complexes [Cu(R,R-trans-dach(bpy)](ClO4)2 1b, [Cu(S,S-trans-dach)(bpy)](ClO4)2 1c, [Cu(cis-dach)(bpy)](ClO4)2 1d, [Cu(R,R-trans-dach)(phen)](ClO4)2 2b, [Cu(S,S-trans-dach)(phen)](ClO4)2 2c, and [Cu(cis-dach)(phen)](ClO4)2 2d were synthesized and analyzed. All complexes interacted with calf thymus-DNA (CT-DNA) as studied by UV–vis spectroscopy. The nature of binding to CT-DNA was groove/electrostatic as supported by circular dichroism, cyclic voltammetry, and docking studies. Complexes were able to cleave plasmid DNA at 12.5 µM (1ad) and 6 µM (2ad), where 2d showed 64% Form II and 36% Form III. The in vitro cytotoxic studies of two different cancer cell lines showed inhibition with low IC50 value in comparison to reference control (cisplatin). These complexes are efficient in inducing apoptosis in cancer cells, making them viable for potent anticancer activity.  相似文献   

13.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

14.
This study was conducted to prepare novel azomethine chelates of Cu(II), Pd(II), Zn(II) and Cr(III) with tridentate dianionic azomethine OVAP ligand 2‐[(2‐hydroxyphenylimino)methyl]‐6‐methoxyphenol. The prepared compounds were characterized using elemental analyses and spectral, conductivity, magnetic and thermal measurements. The spectroscopic data suggest that the parent azomethine ligand binds to the investigated metal ions through both deprotonated phenol oxygen and azomethine nitrogen atoms, and adopts distorted octahedral geometry in the case of Cr(III) and Cu(II) ions while tetrahedral and square planar geometries for Zn(II) and Pd(II) ions, respectively. In order to confirm the molecular geometry of the investigated azomethine chelator and its complexes, theoretical density functional theory calculations were employed. Correlation between experimental observations and theoretical calculations of geometry optimization results are in a good agreement. Absorption titration was used to explore the interaction of the investigated azomethine metal chelates with calf thymus DNA, and the binding constant as well as Gibbs free energy were evaluated. Viscosity measurements and gel electrophoresis studies suggest intercalative and replacement binding modes of the azomethine metal chelates with calf thymus DNA. Additionally, the antimicrobial activity of the complexes was screened against some pathogenic bacteria and fungi. This biological study shows that the complexes exhibit a marked inhibitory effect compared to the corresponding ligand and standard drug s. Furthermore, the effect of the novel compounds as antioxidants was determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C. Finally, in vitro cell proliferation via MTT assay was investigated against colon carcinoma cells (HCT‐116), hepatic cellular carcinoma cells (HepG‐2(and breast carcinoma cells (MCF‐7) to calculate the cytotoxicity of the prepared compounds. Cell proliferation is inhibited for all compounds and in a dose‐dependent manner in the sequence of OVAPPd > OVAPCu > OVAPZn > OVAPCr > OVAP azomethine ligand.  相似文献   

15.
A new series of UO2(II) and ZrO(II) azo‐complexes based on 5‐nitro‐8‐hydroxyquinoline; [UO2(H2L1)(NO3)EtOH] (1), [ZrO(H2L1)(NO3)H2O] (2), [UO2(HL2)(NO3)EtOH]3H2O (3), [ZrO(HL2)(NO3)EtOH] (4), [UO2(HL3)(NO3)(H2O)3]2H2O (5) and [ZrO(HL3)(NO3)EtOH] (6); have been synthesized. The structure of these complexes has been characterized using elemental analysis, thermal analysis, molar conductance, UV–vis, IR, electron impact mass, X‐ray powder diffraction and NMR spectra. The results revealed the formation of non‐electrolyte mononuclear complexes via the N atom of the azo group or of the quinoline ring and the oxygen atom of the deprotonated OH. Fluorescence properties of the synthesized complexes have been examined and the fluorescence quantum yield (Φf) has been determined. The complexes have been tested as cell staining and imaging under the fluorescent microscope. The data showed that complexes 1 and 2 efficiently stain the nuclei in addition to some focal cytoplasmic areas. Other than complexes 3 and 4 exclusively stained the nuclei. On the other hand, complexes 5 and 6 stained the cytoplasm exclusively. It has been demonstrated that complex 4 was the most effective in cell staining. The binding constant (Kb) with DNA was calculated using UV–vis absorption titration and fluorescence spectral methods. It was concluded that complex 4 can be used effectively as fluorescent probes in studying cell biology.  相似文献   

16.
The hexafluorophosphate and chloride salts of two ruthenium(II) complexes, viz. [Ru(phen)(ptzo)2]2 and [Ru(ptzo)3]2+, where ptzo = 1,10-phenanthrolino[5,6-e]1,2,4-triazine-3-one (ptzo) — a new modified phenanthroline (phen) ligand, have been synthesised. These complexes have been characterised by infrared, UV-Vis, steady-state emission and1H NMR spectroscopic methods. Results of absorption and fluorescence titration as well as thermal denaturation studies reveal that both thebis- and tris-complexes of ptzo show moderately strong affinity for binding with calf thymus (CT) DNA with the binding constants being close to 105M-1 in each case. An intercalative mode of DNA binding has been suggested for both the complexes. Emission studies carried out in non-aqueous solvents and in aqueous media without DNA reveal that both [Ru(phen)(ptzo)2]2+ and [Ru(ptzo)3]2+ are weakly luminescent under these solution conditions. Successive addition of CT DNA to buffered aqueous solutions containing [Ru(phen)(ptzo)2]2+results in an enhancement of the emission. These results have been discussed in the light of the dependence of the structure-specific deactivation processes of the MLCT state of the metallo-intercalator with the characteristic features of its DNA interaction. In doing so, attempts have been made to compare and contrast its properties with those of the analogous phenanthroline-based complexes including the ones reported by us previously.  相似文献   

17.
Two new acylhydrazone copper(II) complexes of 4‐hydroxy‐N′‐[(1E)‐1‐(4‐methylphenyl)ethylidene]benzohydrazide (HL1) and 4 ethyl [4‐({(2E)‐2‐[1‐(4‐methylphenyl)ethylidene]hydrazinyl}carbonyl)phenoxy]acetate (HL2) have been synthesized and characterized. The structures of both acylhydrazone and copper(II) complexes were identified by elemental analysis, infrared spectra, UV–visible electronic absorption spectra, magnetic susceptibility measurements, TGA and powder X‐ray diffraction. DNA binding and DNA cleavage activities of the synthesized copper complexes were examined by using UV‐visible titration and agarose gel electrophoresis, respectively. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The results indicate that all the complexes bind slightly to calf thymus DNA and cleavage pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide‐derived species and singlet oxygen (1O2) are the active oxidative species for DNA cleavage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
By reacting thiosemicarbazides substituted on the aminic nitrogen with 5-formyluracil, several new 5-formyluracil thiosemicarbazones (H3ut) derivatives were synthesised and characterized. These ligands, treated with copper chloride and nitrate, afforded two different kinds of compounds. In the complexes derived from copper chloride the metal atom is pentacoordinated, being surrounded by the neutral ligand binding through SNO donor atoms and by two chlorines, while the nitrate derivatives consist of monocations and nitrate anions. The copper coordination (4 + 2) involves the SNO ligand atoms, two water oxygens and an oxygen atom of a monodentate nitrate group. On varying the substituents on the thiosemicarbazidic moiety, remarkable modifications of the coordination geometry are not observed for the complexes with the same counterion. For all the compounds, interactions with DNA (calf thymus) were studied using UV–Vis spectroscopy; the nuclease activity was verified on plasmid DNA pBR 322 by electrophoresis.  相似文献   

19.
Reaction of Cu(II) nitrate with a new pyrazole-based Schiff base ligand, 5-methyl-3-formylpyrazole-N-(2′-methylphenoxy)methyleneimine (MPzOA), afforded two types of Cu(II) complexes at different reaction temperatures, [Cu(MPzOA)(NO3)]2 (1) and [Cu(3,7,11,15-tetramethylporphyrin)(H2O)](NO3)2 (2), reported together with a Ni(II) complex, [Ni(MPzOA)2(H2O)2]Br2 (3). The compounds are characterized by single crystal X-ray structure analyses along with several physico-chemical and spectral parameters. Complex 1 is authenticated as a bis(μ-pyrazolato)dicopper(II), while 2 is a porphyrinogen and 3 is a distorted octahedral complex. Structural analyses of the complexes reveal that 1 crystallized in monoclinic P21/n space group while 2 and 3 crystallized in monoclinic C2/c space group. DNA-binding studies of the complexes have shown that the complexes interact with CT-DNA. DNA-cleavage studies with plasmid DNA have shown that 1 and 2 induce extensive DNA cleavage in the presence of H2O2 as an additive, whereas there is no change in degradation of super-coiled DNA by 3 in the presence of additive. The antimicrobial studies of the complexes against Escherichia coli DH5α bacteria strain indicated that all the complexes were capable of killing E. coli with different LD50 values.  相似文献   

20.
Abstract

A one pot procedure was used to synthesize two new derivatives of α-aminophosphonates. Novel copper(II) complexes of α-aminophosphonates were synthesized by coordinating different copper salts with the newly synthesized α-aminophosphonates. Their structures were characterized by different spectral and analytical techniques. Evaluation of the metal-free ligands HL1, HL2, and their Cu(II) complexes against human colon carcinoma HT-29 cell lines was performed, using cisplatin as a reference drug. The results indicated that the complexes of the ligand HL1 exhibited enhanced anticancer activity, while ligand HL2 complexes showed decreased anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号