首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The principles of neutron capture therapy of tumor diseases, the types of drugs, and the results of their clinical applications are discussed.Based on the report presented at the International Conference Modern Trends in Organoelement and Polymer Chemistry dedicated to the 50th anniversary of the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (Moscow, May 30–June 4, 2004).Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1795–1812, September, 2004.  相似文献   

2.
The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p‐boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen‐based neural network method is suggested. The results of various (20 × 20 × 40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave‐one‐out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30 µg g−1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis of the novel unprotected carboranyl C-glycosides 2 and 20-24 starting from ethynyl C-glycosides 1, 5-8, 10, and 13 is described. The new compounds are highly water-soluble and display only a very low cytotoxicity, which makes them promising candidates for use in boron neutron capture therapy for the treatment of cancer.  相似文献   

4.
A new series of porphyrin-cobaltacarborane conjugates (1-5) that contain four to sixteen carborane clusters per porphyrin macrocycle, were prepared in excellent yields (90-97 %) by means of a ring-opening reaction of the zwitterionic cobaltacarborane [3,3'-Co(8-C(4)H(8)O(2-)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))]. The X-ray structure of one conjugate (3) is presented. The aggregation properties of these conjugates were investigated by using absorption and fluorescence spectrophotometry, and the stages of microcrystal formation were captured by using atomic force microscopy. All conjugates were found to aggregate in aqueous solutions, to form a broad dispersity of particle sizes. The cellular uptake, cytotoxicity, and preferential sites of subcellular localization of this series of conjugates were evaluated in human carcinoma HEp2 cells. The extent of conjugate cellular uptake depends on the number of cobaltacarborane units at the porphyrin periphery, their distribution, and the conjugate aggregation behavior. Conjugates 2 and 4, bearing either two adjacent or three 3,5-dicobaltacarboranephenyl groups, accumulated the most within HEp2 cells and are, therefore, the most promising boron neutron capture therapy agents. All conjugates showed very low dark- and photo-toxicity, probably due to their strong tendency for aggregation in aqueous solutions, and localized subcellularly within vesicles that correlated, to some extent, with the cell lysosomes.  相似文献   

5.
We have prepared two new boron-containing lipids with potential use in boron neutron capture therapy of tumors. These lipids consist of a diethanolamine frame with two myristoyl chains bonded as esters, and a butylene or ethyleneoxyethylene unit linking the doubly negatively charged dodecaborate cluster to the amino function of the frame, obtained by nucleophilic attack of the amino on the tetrahydrofurane and dioxane derivatives, respectively, of closo-dodecaborate. The latter cluster lipid can form liposomes at 25 °C whereas the former lipid at this temperature assembles into bilayer disks. Both lipids form stable liposomes when mixed with suitable helper lipids. The thermotropic behavior was found to be different for the two lipids, with the butylene lipid showing sharp melting transitions at surprisingly high temperatures. Toxicity in vitro and in vivo varies greatly, with the butylene derivative being more toxic than the ethyleneoxyethylene derivative.  相似文献   

6.
A novel Tyr3-octreotate conjugated closo-carborane as a potential compound for boron neutron capture therapy was obtained via Fmoc solid phase peptide synthesis. The boron cluster [C2B10H11] was introduced through the reaction of 6,9-bis(acetonitrile)decaborane and 5-hexynoic acid yielding a new closo-carborane conjugated carboxylic acid which was coupled subsequently with solid phase conjugated Tyr3-octreotate. The final boron-containing peptide was purified by preparative reverse phase HPLC and structural identity was proved applying MALDI-TOF mass spectrometry.  相似文献   

7.
8.
A number of (hydroxyalkylamine)‐N‐(aminoalkyl)azanonaborane(11) derivatives have been synthesized to provide azanonaboranes with different hydrophilic functional groups for use in the treatment of cancer by boron neutron capture therapy (BNCT). The exo‐diamine group of (aminoalkylamine)‐N‐(aminoalkyl)azanonaborane(11) {H2N(CH2)mH2NB8H11NH(CH2)mNH2, where m = 4–6} can be substituted by amino alcohol ligands {HO(CH2)nNH2, where n = 3 and 4} to give azanonaboranes containing free amino and hydroxy groups: (3‐hydroxypropylamine)‐N‐(aminobutyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)4NH2}, 1 ; (4‐hydroxybutylamine)‐N‐ (aminobutyl)azanonaborane(11) {HO(CH2)4H2NB8H11NH(CH2)4NH2}, 2 ; (3‐hydroxypropylamine)‐N‐ (aminopentyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)5NH2}, 3 ; (4‐hydroxypropylamine)‐N‐(aminopentyl)azanonaborane(11) {HO(CH2)4H2NB8H11NH(CH2)5NH2}, 4 ; (3‐hydroxypropylamine)‐N‐(aminohexyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)6NH2}, 5 . The in vitro toxicity test using Chinese hamster‐V79 cells showed that compounds 1 – 3 were less toxic (LD50 value of ~2.3, 1.7 and 1.4 mM , respectively) than spermine and spermidine (LD50 value of ~0.88 and 0.66 mM , respectively). In vivo distribution experiments of these compounds in Lewis lung carcinoma and B16 melanoma tumor‐bearing mice showed that boron can be found in tumor tissue. The compounds prepared can be considered as a new class of boron containing polyamine compounds that may be useful for boron neutron capture therapy of tumors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The upregulation of low-density lipoprotein (LDL) transporters in tumour cells has been exploited to deliver a sufficient amount of gadolinium/boron/ligand (Gd/B/L) probes for neutron capture therapy, a binary chemio-radiotherapy for cancer treatment. The Gd/B/L probe consists of a carborane unit (ten B atoms) bearing an aliphatic chain on one side (to bind LDL particles), and a Gd(III)/1,4,7,10-tetraazacyclododecane monoamide complex on the other (for detection by magnetic resonance imaging (MRI)). Up to 190 Gd/B/L probes were loaded per LDL particle. The uptake from tumour cells was initially assessed on cell cultures of human hepatoma (HepG2), murine melanoma (B16), and human glioblastoma (U87). The MRI assessment of the amount of Gd/B/L taken up by tumour cells was validated by inductively coupled plasma-mass-spectrometric measurements of the Gd and B content. Measurements were undertaken in vivo on mice bearing tumours in which B16 tumour cells were inoculated at the base of the neck. From the acquisition of magnetic resonance images, it was established that after 4-6 hours from the administration of the Gd/B/L-LDL particles (0.1 and 1 mmol kg(-1) of Gd and (10)B, respectively) the amount of boron taken up in the tumour region is above the threshold required for successful NCT treatment. After neutron irradiation, tumour growth was followed for 20 days by MRI. The group of treated mice showed markedly lower tumour growth with respect to the control group.  相似文献   

10.
A number of azanonaboranes containing imidazole derivatives have been synthesized by a ligand-exchange reaction. The exo-NH(2)R group of the azanonaborane of the type [(RH(2)N)B(8)H(11)NHR] can be exchanged by one hetero-nitrogen atom of the imidazole ring. In the case of histamine, the exchange takes place on the aliphatic amino group, the hetero-nitrogen atom of the imidazole ring or both of them. The products were confirmed by NMR, IR spectroscopy, elemental analysis, and mass spectrometry. The electron-withdrawing effect of the nitro group in 2-nitroimidazole is the main hindrance to achieve the exchange reaction. In vitro experiments were performed with B16 melanoma cells. A comparison of the biological properties of the products in which the B(8)N cluster is connected to the hetero-nitrogen atom of imidazole ring or the aliphatic NH(2) group showed that incorporation of B(8)N cluster unit into primary amino group increases the compound's toxicity. In contrast, this specificity for cytotoxicity effect was not observed in the case of histamine containing two B(8)N clusters which was relatively nontoxic and did not inhibit colony formation up to concentrations of 2 mM.  相似文献   

11.
Texaphyrin macrocycles that contain gadolinium or lutetium, such as motexafin gadolinium and motexafin lutetium, are versatile anticancer therapeutics and diagnostics. Gadolinium texaphyrins substituted with carborane clusters could also find application in combined gadolinium and boron neutron capture therapy (GdB-NCT). The synthesis and characterization of novel texaphyrins containing gadolinium or lutetium in the pentaaza core and two carborane clusters bound to opposite pyrrol units of the macrocycle are described.  相似文献   

12.
The synthesis of a series of N‐glycosyl caboranylquinazolines is described. The condensation reaction of nitro‐acetylanthranilic acid with aminophenylcarborane gave 3‐[(o‐carboran‐1‐yl)phenyl]‐2‐methyl‐6‐nitroquinazolin‐4(3H)‐one 1 followed by reduction with Na2S to the corresponding 6‐amino‐3‐[(o‐carboran‐1‐yl)phenyl]‐2‐methylquinazolin‐4(3H)‐one 2 . Reaction of compound 2 with D‐glucose or D‐ribose in methanol in the presence of a catalytic amount of acetic acid affords boronated N‐glycosylaminoquinazolines namely: 2‐methyl‐3‐[4‐(o‐carboran‐1‐yl)phenyl]‐6‐[N‐β‐D‐glucopyranosyl)]aminoquinazolin‐4(3H)‐one 3 or 2‐methyl‐3‐[4‐(o‐carboran‐1‐yl)phenyl]‐6‐[N‐β‐D‐ribofuranosyl)]aminoquinazolin‐4(3H)‐one 4 , respectively. Degradation of the o‐caborane cage of compounds 3 and 4 yielded highly water‐soluble compounds of sodium 2‐methyl‐3‐[4‐( nido ‐undecarborate‐1‐yl)phenyl]‐6‐[N‐β‐D‐glucopyranosyl]aminoquinazolin‐4(3H)‐one 5 and sodium 2‐methyl‐3‐[4‐( nido ‐undecarborate‐1‐yl)phenyl]‐6‐[N‐β‐D‐ribofuranosyl)]aminoquinazolin‐4(3H)‐one 6 , respectively. The structures were established on the basis of elemental analysis, NMR, IR and mass spectrometry. The in vitro toxicity test using B16 melanoma cells showed that N‐glycosyl of nido ‐undecaboranylquinazolines ( 5 and 6 ), with higher water solubility, is not toxic at boron concentration of 3000 µg boron ml−1, whereas, N‐glycosyl of closo ‐carboranylquinazolines ( 3 and 4 ) has LD50 > 200 µg boron ml−1. The compounds described here may be considered as potential agents for BNCT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Condensation of a new carboranylpyrrole 1 with benzaldehydes leads to β-carboranylporphyrins 2 and 3 in good yields. These new porphyrins of high boron content (32-43%) have potential as boron delivery agents for BNCT. The X-ray structures of one β-carboranylporphyrin, of a carboranylpyrrole, and of a side-product are presented.  相似文献   

14.
15.
Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were synthesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonylation/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides. Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7–870 μM) in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine liver β-glucosidase and β-galactosidase). This could indicate the involvement of the boron atom in the binding. These glycosidases are targeted for the management of diabetes, viral infections (via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules, with the growth of the normal cell line MCF10A not being affected by this compound. One of these molecules showed both potency and selectivity; thus, it is a candidate for further study in this area. This paper provides numerous novel aspects, including expedited access to borylated 2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures is described.  相似文献   

16.
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.  相似文献   

17.
Derivatives of purine, adenine, guanine, and 2,6-diaminopurine linked to the azanonaborane (B8N cluster) have been prepared, for possible use as powerful agents for boron neutron capture therapy (BNCT). The synthesis was carried out via a ligand exchange reaction. The exo-NH2R group of the azanonaborane of the type [(RH2N)B8H11NHR] can be exchanged by one hetero-nitrogen atom of the pyrimidine ring, and except for guanine, also by an N atom of the imidazole ring. The identity of the products was confirmed by NMR, elemental analysis, IR, and mass spectrometry. No reaction was found to occur with caffeine and theophylline under the same reaction conditions.   相似文献   

18.
In 2020, the world tried to combat the corona virus (COVID-19) pandemic. A proven treatment method specific to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still not found. In this study, seven new antiviral compounds were designed for COVID-19 treatment. The ability of these compounds to inhibit COVID-19’s RNA processing was calculated by the molecular docking study. It has been observed that the compounds can have high binding affinities especially against NSP12 (between -9.06 and -8.00 kcal/mol). The molecular dynamics simulation of NSP12-ZG 7 complex proved the stability of interaction. The synthesis of two most active molecules was performed by one-pot reaction and characterized by FT-IR, 1H-NMR, 13C-NMR, and mass spectroscopy. The compounds presented with their synthesis are inhibitory core structures against SARS-CoV-2 infection.  相似文献   

19.
A series of Cu(II), Co(II), Pd(II), Pt(II), Zn(II), Cd(II) and Fe(III) complexes were designed and synthesized using Schiff base 1‐phenyl‐2,3‐dimethyl‐4‐(N‐3‐formyl‐6‐methylchromone)‐3‐pyrazolin‐5‐one (HL). The new metal complexes were investigated using various physicochemical techniques including elemental and thermal analyses, molar electric conductivity and magnetic susceptibility measurements, as well as spectroscopic methods. Also, the crystal structures of ligand HL and the Pd(II) complex were determined using single‐crystal X‐ray diffraction analysis. For all compounds, the antimicrobial activity was studied against a series of standard strains: Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Escherichia coli, Acinetobacter baumannii, Candida albicans, Candida krusei and Cryptococcus neoformans. The in vitro antiproliferative activity of the ligand and complexes was evaluated against ten cancer cell lines: MSC, A375, B16 4A5, HT‐29, MCF‐7, HEp‐2, BxPC‐3, RD, MDCK and L20B. At 10 μM concentration a significant cytotoxic effect of the Co(II), Pd(II) and Cd(II) complexes was observed against B16 4A5 murine melanoma cells. The Zn(II) complex is active against HEp‐2, RD and MDCK cancer cell lines, where IC50 values vary between 1.0 and 77.6 and for BxPC‐3 the activity index versus doxorubicin is 3.7 times higher.  相似文献   

20.
A series of stable N-acyl benzoazetinones have been synthesized in moderate to good yields (58–85%) from easily available substrates such as 2-(N-acyl) amino benzoic acids through intramolecular amidation under mild conditions. These geometry-optimized benzoazetinones were docked in the model target of P450, class CYP53A15, a benzoate 4-monooxygenase abundantly found in the genome of ascomycetes and Basidiomycetes classes of pathogenic fungi. Low per residue root-mean-square deviation (RMSD) of modeled structure of the enzyme indicated similar topology as template (4D6Z.pdb). Observed score judges site-specific docking, and the interaction of quantum mechanically optimized benzoazetinone derivatives with the target enzyme. These results suggest that 3i is the best antifungal agent. The specific hydrophobic substituent in the benzoazetinones contributed to the stability of ligand–target complex. Overall, the study provided insight into the specificity of the site-specific interactions, thereby, facilitating the possibility of development of broad-spectrum antifungal agents against opportunistic and infectious fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号