首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A string of four new hetero binuclear Ru(III) complexes of ferrocenecarboxaldehyde-4(N)-substituted thiosemicarbazones were synthesized and characterized by various spectral (infrared, ultraviolet–visible, Electron Paramagnetic Resonance (EPR) and High Resolution Mass Spectrometry (HR-MS) techniques. The binding abilities of the ligands/complexes with nucleic acid (calf thymus DNA, CT-DNA) and bovine serum albumin (BSA) were analyzed by absorption and emission titration methods. The complexes exhibited better DNA binding affinity than their parent ligands. The interaction with CT-DNA was found to be intercalative and with BSA static quenching mechanism was observed. All the synthesized Ru(III) complexes were subjected to study their in vitro cytotoxicity against MCF-7 (human breast cancer) and HT-29 (human colon cancer) cell lines. Among the four complexes, complex 3 [RuCp (FF-etsc)PPh3]Cl exhibited the highest cytotoxicity in MCF-7 cells and complex 4 [RuCp (FF-ptsc)PPh3]Cl was the most active on HT-29 cells.  相似文献   

2.
Cancer cells usually adapt metabolic phenotypes to chemotherapeutics. A defensive strategy against this flexibility is to modulate signaling pathways relevant to cancer bioenergetics. A triphenylphosphonium‐modified terpyridine platinum(II) complex (TTP) was designed to inhibit thioredoxin reductase (TrxR) and multiple metabolisms of cancer cells. TTP exhibited enhanced cytotoxicity against cisplatin‐insensitive human ovarian cancer cells in a caspase‐3‐independent manner and showed preferential inhibition to mitochondrial TrxR. The morphology and function of mitochondria were severely damaged, and the levels of mitochondrial and cellular reactive oxygen species were decreased. As a result, TTP exerted strong inhibition to both mitochondrial and glycolytic bioenergetics, thus inducing cancer cells to enter a hypometabolic state.  相似文献   

3.
《中国化学快报》2023,34(9):108413
Bioorthogonal reactions can take place in biological environments without interfering with biochemical processes. In this study, Pd(PPh3)2Cl2 was used as a bioorthogonal catalyst to in situ transform the stable N-heterocyclic carbene (NHC)-gold(I)-alkyne complex 5 to its active species which can effectively inhibit thioredoxin reductase (TrxR) and exhibit significant anticancer bioactivity in hepatocellular carcinoma (HCC).  相似文献   

4.
A family of lipophilic, cationic Au(I) complexes of N-heterocyclic carbenes (NHCs) have been designed as new mitochondria-targeted antitumor agents that combine both selective mitochondrial accumulation and selective thioredoxin reductase inhibition properties within a single molecule. Two-step ligand exchange reactions with cysteine (Cys) and selenocysteine (Sec) occur with release of the NHC ligands. At physiological pH the rate constants for the reactions with Sec are 20- to 80-fold higher than those with Cys. The complexes are selectively toxic to two highly tumorigenic breast cancer cell lines and not to normal breast cells, and the degree of selectivity and potency are optimized by modification of the substituent on the simple imidazolium salt precursor. The lead compound is shown to accumulate in mitochondria of cancer cells, to cause cell death through a mitochondrial apoptotic pathway and to inhibit the activity of thioredoxin reductase (TrxR) but not the closely related and Se-free enzyme glutathione reductase.  相似文献   

5.
N-Heterocyclic carbene (NHC) ligand precursors, namely, HIm(A)Cl [1,3-bis(2-ethoxy-2-oxoethyl)-1H-imidazol-3-ium chloride] and HIm(B)Cl {1,3-bis[2-(diethylamino)-2-oxoethyl]-1H-imidazol-3-ium chloride}, functionalized with hydrophilic groups on the imidazole rings have been synthesized and were used in the synthesis of corresponding carbene complexes of silver(I) and copper(I), {[Im(A)]AgCl}, {[Im(A)]CuCl}, and {[Im(B)](2)Ag}Cl. Related Au(I)NHC complexes {[Im(A)]AuCl} and {[Im(B)]AuCl} have been obtained by transmetalation using the silver carbene precursor. These compounds were characterized by several spectroscopic techniques including NMR and mass spectroscopy. HIm(B)Cl and the gold(I) complexes {[Im(A)]AuCl} and {[Im(B)]AuCl} were also characterized by X-ray crystallography. The cytotoxic properties of the NHC complexes have been assessed in various human cancer cell lines, including cisplatin-sensitive and -resistant cells. The silver(I) complex {[Im(B)](2)Ag}Cl was found to be the most active, with IC(50) values about 2-fold lower than those achieved with cisplatin in C13*-resistant cells. Growth-inhibitory effects evaluated in human nontransformed cells revealed a preferential cytotoxicity of {[Im(B)](2)Ag}Cl versus neoplastic cells. Gold(I) and silver(I) carbene complexes were also evaluated for their ability to in vitro inhibit the enzyme thioredoxin reductase (TrxR). The results of this investigation showing that TrxR appeared markedly inhibited by both gold(I) and silver(I) derivatives at nanomolar concentrations clearly point out this selenoenzyme as a protein target for silver(I) in addition to gold(I) complexes.  相似文献   

6.
In this work, two thiourea ligands bearing a phosphine group in one arm and in the other a phenyl group (T2) or 3,5-di-CF3 substituted phenyl ring (T1) have been prepared and their coordination to Au and Ag has been studied. A different behavior is observed for gold complexes, a linear geometry with coordination only to the phosphorus atom or an equilibrium between the linear and three-coordinated species is present, whereas for silver complexes the coordination of the ligand as P^S chelate is found. The thiourea ligands and their complexes were explored against different cancer cell lines (HeLa, A549, and Jurkat). The thiourea ligands do not exhibit relevant cytotoxicity in the tested cell lines and the coordination of a metal triggers excellent cytotoxic values in all cases. In general, data showed that gold complexes are more cytotoxic than the silver compounds with T1, in particular the complexes [AuT1(PPh3)]OTf, the bis(thiourea) [Au(T1)2]OTf and the gold-thiolate species [Au(SR)T1]. In contrast, with T2 better results are obtained with silver species [AgT1(PPh3)]OTf and the [Ag(T1)2]OTf. The role played by the ancillary ligand bound to the metal is important since it strongly affects the cytotoxic activity, being the bis(thiourea) complex the most active species. This study demonstrates that metal complexes derived from thiourea can be biologically active and these compounds are promising leads for further development as potential anticancer agents.  相似文献   

7.
A library of eleven cationic gold(III) complexes of the general formula [(C C)Au(N N)]+ when C C is either biphenyl or 4,4’-ditertbutyldiphenyl and N N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C N C)Au(NHC)]+ structure. This makes the [(C C)Au(N N)]+ complexes a new class of organogold compounds with an original mode of action.  相似文献   

8.
Gold(I) complexes containing stabilising ligands such as phosphines or N-heterocyclic carbenes (NHCs) are known to be inhibitors of the enzyme thioredoxin reductase (TrxR) and therefore act as potential apoptosis-inducing anticancer drug candidates. The conjugation of biomolecules overexpressed in cancer cells to the gold complexes makes them semi-targeted metabolites. Auranofin, an anti-arthritis agent, encompasses this property and exhibits anti-tumour activities. The synthesis, characterization and biological evaluation of four novel N-heterocyclic carbene-gold(I)-thiosugar complexes derived from glucose, lactose and galactose is reported. The reactions of 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) chloride (NHC1-Au-Cl) with pre-synthesized glycosyl thiols under mildly basic conditions gave the desired NHC-Au-thiosugar complexes in high to excellent yields (79–91%). The complexes retain the strong and redox-active Au-S bond contained in Auranofin. All complexes showed good solubility in biological media and were tested against the NCI 60 cancer cell panel for cytotoxicity. The synthesized NHC1-Au derivatives showed good activity in the medium to low micromolar region, while complex 2 showed activity in the low micromolar to nanomolar region against the tested cell lines. To provide a theoretical structure of 4, computational calculations were carried out based on the crystal structures of NHC-Au-SCN and NHC-Au-S-C6H4OMe.  相似文献   

9.
Four cycloaurated phosphine sulfide complexes, [Au{κ2-2-C6H4P(S)Ph2}2][AuX2] [X=Cl ( 2 ), Br ( 3 ), I ( 4 )] and [Au{κ2-2-C6H4P(S)Ph2}2]PF6 ( 5 ), have been prepared and thoroughly characterized. The compounds were found to be stable under physiological-like conditions and showed excellent cytotoxicity against a broad range of cancer cell lines and remarkable cytotoxicity in 3D tumor spheroids. Mechanistic studies with cervical cancer (HeLa) cells indicated that the cytotoxic effects of the compounds involve the inhibition of thioredoxin reductase and induction of apoptosis through mitochondrial disruption. In vivo experiments in nude mice bearing HeLa xenografts showed that treatment with compounds 4 and 5 resulted in significant inhibition of tumor growth (35.8 and 46.9 %, respectively), better than that of cisplatin (29 %). The newly synthesized gold complexes were also evaluated for their in vitro and in vivo anti-inflammatory activity through the study of lipopolysaccharide (LPS)-activated macrophages and carrageenan-induced hind paw edema in rats, respectively.  相似文献   

10.
In this study, we report on the synthesis of new organoselenium derivatives, including nonsteroidal anti-inflammatory drugs (NSAIDs) scaffolds and Se functionalities (isoselenocyanate and selenourea), which were evaluated against four types of cancer cell line: SW480 (human colon adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells), MCF-7 (human breast adenocarcinoma cells). Among these compounds, most of the investigated compounds reduced the viability of different cancer cell lines. The most promising compound 6b showed IC50 values under 10 μM against the four cancer cell lines, particularly to HeLa and MCF-7, with IC50 values of 2.3 and 2.5 μM, respectively. Furthermore, two compounds, 6b and 6f, were selected to investigate their ability to induce apoptosis in MCF-7 cells via modulation of the expression of anti-apoptotic Bcl-2 protein, pro-inflammatory cytokines (IL-2) and proapoptotic caspase-3 protein. The redox properties of the NSAIDs-Se derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin-dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, a molecular docking study revealed that an interaction with the active site of thioredoxin reductase 1 (TrxR1) predicted the antiproliferative activity of the synthesized candidates. Overall, these results could serve as a promising launch point for further designs of NSAIDs-Se derivatives as potential antiproliferative agents.  相似文献   

11.
Five new silver(I) complexes were synthesized with mixed ligands of thiosemicarbazone derivatives and diphenyl(p-tolyl)phosphine in search of new biologically active compounds. A CHN elemental analysis, powder X-ray diffraction (PXRD) data and several spectroscopic techniques such as Fourier-transform infrared spectroscopy, energy-dispersive X-ray, 1H, 13C, and 31P{1H} NMR were performed to elucidate the structure of these complexes. Elemental analysis suggested that the stoichiometry of the complexes formed by the reaction of silver nitrate with thiosemicarbazone in the presence of (p-tolyl)PPh2 was indeed 1:2:1 molar ratio. The silver ions were discovered to be coordinated to the sulfur of thiosemicarbazone and phosphorus of (p-tolyl)PPh2, having a tetrahedral geometry based on the spectroscopic data obtained. The PXRD patterns were studied to see the degree of crystallinity of the complexes. The in vitro antiproliferative activity of these complexes was investigated toward the MDA-MB-231 and MCF-7 breast cancer cell lines, as well as the HT-29 colon cancer cell line, which yielded IC50 values in low micromolar range. The antiplasmodial activity of these complexes was also examined against chloroquine-resistant Plasmodium falciparum parasite which demonstrated good activity and further tested for their selectivity index.  相似文献   

12.
Gold(I) N-heterocyclic carbene (AuI-NHC) complexes have emerged as potential anticancer agents owing to their high cytotoxicity and stability. Integration of their above unique functions with customized aggregation-induced emission (AIE) luminogens to achieve specific bioimaging and efficient theranostics to cancer is highly desirable but is rarely studied. Now, a series of novel AuI-NHC compounds were developed with AIE characteristics. A complex with a PPh3 ligand was selected out as it could achieve both prominent specific imaging of various cancer cells and efficient inhibition of their growth with negligible toxic effects on normal cells due to the targeting binding and strong inhibition towards thioredoxin reductase. This complex could also act as a powerful radiosensitizer to boost the anticancer efficacy with performance superior to that of popularly used auranofin. It holds great potential as a specific and effective theranostic drug in cancer diagnosis and precise therapy.  相似文献   

13.
Three [1,3-diethyl-4-(p-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)imidazol-2-ylidene](L)gold(I) complexes, 4 a (L=Cl), 5 a (L=PPh3), and 6 a (L=same N-heterocyclic carbene (NHC)), and their fluorescent [4-(anthracen-9-yl)-1,3-diethyl-5-phenylimidazol-2-ylidene](L)gold(I) analogues, 4 b , 5 b , and 6 b , respectively, were studied for their localisation and effects in cancer cells. Despite their identical NHC ligands, the last three accumulated in different compartments of melanoma cells, namely, the nucleus ( 4 b ), mitochondria ( 5 b ), or lysosomes ( 6 b ). Ligand L was also more decisive for the site of accumulation than the NHC ligand because the couples 4 a / 4 b , 5 a / 5 b , and 6 a / 6 b , carrying different NHC ligands, afforded similar results in cytotoxicity tests, and tests on targets typically found at their sites of accumulation, such as DNA in nuclei, reactive oxygen species and thioredoxin reductase in mitochondria, and lysosomal membranes. Regardless of the site of accumulation, cancer cell apoptosis was eventually induced. The concept of guiding a bioactive complex fragment to a particular subcellular target by secondary ligand L could reduce unwanted side effects.  相似文献   

14.
Many cancer cells critically rely on antioxidant systems for cell survival and are vulnerable to further oxidative impairment triggered by agents generating reactive oxygen species (ROS). Therefore, the classical design and development of inhibitors that target antioxidant defense enzymes such as thioredoxin reductase (TrxR) can be a promising anticancer strategy. Herein, it is shown that a gold(I) complex containing an oleanolic acid derivative ( 4 b ) induces apoptosis of ovarian cancer A2780 cells by activating endoplasmic reticulum stress (ERS). It can inhibit TrxR enzyme activity to elevate ROS, mediate ERS and mitochondrial dysfunction, and finally leads to cell cycle arrest and apoptosis of A2780 cells. Notably, this complex inhibits A2780 xenograft tumor growth accompanied by increased ERS level and decreased TrxR activity in tumor tissues.  相似文献   

15.
Copper(I) complexes of the types [Cu(N–N)(PPh3)2]NO3 (LC41–LC44) and [Cu(N–N)(PPh3)(NO3)] (LC45) carrying 3‐substituted 1‐pyridine‐2‐ylimidazo[1,5‐a]pyridine (N–N) derivatives and triphenylphosphine (PPh3) ligands have been prepared. The synthesized copper(I)–phosphine complexes were fully characterized by NMR, IR, ESI‐MS and UV–visible spectroscopy as well as by cyclic voltammetry. Selected structures such as LC42, LC43 and LC45 were additionally analysed by single‐crystal X‐ray method, which show that copper(I) centre adopts a highly distorted tetrahedral geometry. The 1H and 13C NMR spectral data of the complexes throw light on the nature of metal–ligand bonding. They display dπ–π* metal‐to‐ligand charge transfer (MLCT) transition and show quasireversible CuI/CuII metal oxidation. Among the copper(I)–phosphine complexes, LC41–LC44 exhibit moderate cytotoxicity (IC50: 24 h, 67–74 μM; 48 h, 58–70 μM) against human lung epithelial adenocarcinoma A549 cells, whereas LC45 displays the best activity (IC50: 24 h, 42 μM; 48 h, 34 μM) for A549 cancer cell line, which is better than that of the commercial antitumor drug cisplatin. All the complexes also displayed excellent selectivity by being relatively inactive against the human lung epithelial L132 normal cell line with selectivity index (SI) values ranging from 3.4 to 7.4. The complexes block cell cycle progression of A549 cells in G0/G1 phase. FACSVerse analyses are suggestive of reactive oxygen species (ROS) generation and apoptotic cell death induced by the LC41, LC43 and LC45. The induction of apoptosis in A549 cells was shown by Annexin V with propidium iodide (PI) and 4′,6‐diamidino‐2‐phenylindole (DAPI) staining methods and established the ability of LC41, LC43 and LC45 to accumulate in the cell nuclei.  相似文献   

16.
In the design of anticancer gold(I) complexes with high in vivo efficacy, tuning the thiol reactivity to achieve stability towards blood thiols yet maintaining the thiol reactivity to target cellular thioredoxin reductase (TrxR) is of pivotal importance. Herein we describe a dinuclear gold(I) complex ( 1 ‐PF6) utilizing a bridging bis(N‐heterocyclic carbene) ligand to attain thiol stability and a diphosphine ligand to keep appropriate thiol reactivity. Complex 1 ‐PF6 displays a favorable stability that allows it to inhibit TrxR activity without being attacked by blood thiols. In vivo studies reveal that 1 ‐PF6 significantly inhibits tumor growth in mice bearing HeLa xenograft and mice bearing highly aggressive mouse B16‐F10 melanoma. It inhibits angiogenesis in tumor models and inhibits sphere formation of cancer stem cells in vitro. Toxicology studies indicate that 1 ‐PF6 does not show systemic anaphylaxis on guinea pigs and localized irritation on rabbits.  相似文献   

17.
The synthesis of novel triphenyltin(IV) compounds, Ph3SnLn (n = 1–3), with oxaprozin (3-(4,5-diphenyloxazol-2-yl)propanoic acid), HL1, and the new propanoic acid derivatives 3-(4,5-bis(4-methoxylphenyl)oxazol-2-yl)propanoic acid, HL2, and 3-(2,5-dioxo-4,4-diphenylimidazolidin-1-yl)propanoic acid, HL3, has been performed. The ligands represent commercial drugs or their derivatives and the tin complexes have been characterized by standard analytical methods. The in vitro antiproliferative activity of both ligands and organotin(IV) compounds has been evaluated on the following tumour cell lines: human prostate cancer (PC-3), human colorectal adenocarcinoma (HT-29), breast cancer (MCF-7), and hepatocellular cancer (HepG2), as well as on normal mouse embryonic fibroblast cells (NIH3T3) with the aid of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. Contrary to the inactive ligand precursors, all organotin(IV) carboxylates showed very good activity with IC50 values ranging from 0.100 to 0.758 µM. According to the CV assay (IC50 = 0.218 ± 0.025 µM), complex Ph3SnL1 demonstrated the highest cytotoxicity against the caspase 3 deficient MCF-7 cell line. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated a two-fold lower concentration of tin in MCF-7 cells in comparison to platinum. To investigate the mechanism of action of the compound Ph3SnL1 on MCF-7 cells, morphological, autophagy and cell cycle analysis, as well as the activation of caspase and ROS/RNS and NO production, has been performed. Results suggest that Ph3SnL1 induces caspase-independent apoptosis in MCF-7 cells.  相似文献   

18.
Gold(I) N‐heterocyclic carbene (AuI‐NHC) complexes have emerged as potential anticancer agents owing to their high cytotoxicity and stability. Integration of their above unique functions with customized aggregation‐induced emission (AIE) luminogens to achieve specific bioimaging and efficient theranostics to cancer is highly desirable but is rarely studied. Now, a series of novel AuI‐NHC compounds were developed with AIE characteristics. A complex with a PPh3 ligand was selected out as it could achieve both prominent specific imaging of various cancer cells and efficient inhibition of their growth with negligible toxic effects on normal cells due to the targeting binding and strong inhibition towards thioredoxin reductase. This complex could also act as a powerful radiosensitizer to boost the anticancer efficacy with performance superior to that of popularly used auranofin. It holds great potential as a specific and effective theranostic drug in cancer diagnosis and precise therapy.  相似文献   

19.
Metallodrugs form a large family of therapeutic agents against cancer, among which is cisplatin, a paradigmatic member. Therapeutic resistance and undesired side effects to Pt(II) related drugs, prompts research on different metal–ligand combinations with potentially enhanced biological activity. We present the synthesis and biological tests of novel palladium(II) complexes containing bisdemethoxycurcumin (BDMC) 1 and 2. Complexes were fully characterized and their structures were determined by X-ray diffraction. Their biological activity was assessed for several selected human tumor cell lines: Jurkat (human leukaemic T-cell lymphoma), HCT-116 (human colorectal carcinoma), HeLa (human cervix epitheloid carcinoma), MCF-7 (human breast adenocarcinoma), MDA-MB-231 (human mammary gland adenocarcinoma), A549 (human alveolar adenocarcinoma), Caco-2 (human colorectal carcinoma), and for non-cancerous 3T3 cells (murine fibroblasts). The cytotoxicity of 1 is comparable to that of cisplatin, and superior to that of 2 in all cell lines. It is a correlation between IC50 values of 1 and 2 in the eight studied cell types, promising a potential use as anti-proliferative drugs. Moreover, for Jurkat cell line, complexes 1 and 2, show an enhanced activity. DFT and docking calculations on the NF-κB protein, Human Serum Albumin (HSA), and DNA were performed for 1 and 2 to correlate with their biological activities.  相似文献   

20.
Six new gold(III) complexes [Au(bzpam)Cl2] (1, bzpamH = N‐benzyl picolinamide), [Au(hetpam)Cl2] (2, hetpamH = N‐(2‐hydroxyethyl) picolinamide), [Au(pypam)Cl]AuCl4 (3, pypamH = N‐(pyridin‐2‐ylmethyl) picolinamide), [Au(dmepam)Cl]AuCl4 (4, dmepamH = N‐(2‐(dimethylamino)ethyl) picolinamide), [Au(bhetpydam)Cl] (5, bhetpydamH2 = N,N′‐bis(2‐hydroxyethyl) pyridine‐ 2,6‐dicarboxamide) and [Au2(hedam)Cl4] (6, hedamH2 = N,N′‐(hexane‐1,6‐diyl) dipicolinamide) with deprotonated pyridyl carboxamide were synthesized and characterized by elemental analysis, molar conductivity, IR, H1 NMR and C13 NMR techniques. The analytical data showed that deprotonated pyridyl carboxamide coordinated with gold(III) ions through a nitrogen atom. The cytotoxicity against Bel‐7402 and HL‐60 cell lines was tested by MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) and SRB (sulforhodamine B) assays. The results indicated that the complexes exerted cytotoxic effects against Bel‐7402 and HL‐60 cell lines, complex 6 had better cytotoxicity than cisplatin, and complex 3 displayed similar cytotoxicity to cisplatin against Bel‐7402 cell line. The results suggested that the characteristics of ligands had an important effect on cytotoxicity of complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号