首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   

2.
An unprecedented coupling reaction of heteroatom-containing tripyrranes leads to the formation of core-modified sapphyrins 1 and 2 , which self-assemble in the solid state to form supramolecular ladders. Weak C−H⋅⋅⋅S and C−H⋅⋅⋅Se hydrogen-bonding interactions in addition to C−H⋅⋅⋅N hydrogen bonds are responsible for the observed structures.  相似文献   

3.
Weakly or “partially” bonded molecules are an important link between the chemical and van der Waals interactions. Molecular structures of six new SbBr3-Py complexes in the solid state have been determined by single-crystal X-ray diffraction analysis. In all complexes all Sb atoms adopt a pseudo-octahedral coordination geometry which is completed by additional Sb⋅⋅⋅Br contacts shorter than the sum of the van der Waals radii, with Br−Sb⋅⋅⋅Br angles close to 180°. To reveal the nature of Sb–Br and Sb–N interactions, the DFT calculations were performed followed by the analysis of the electrostatic potentials, the orbital interactions and the topological analysis. Based on Natural Bond Orbital (NBO) analysis, the Sb–Br interactions range from the covalent bonds to the pnictogen bonds. A simple structural parameter, non-covalence criterion (NCC) is defined as a ratio of the atom-atom distance to the linear combination of sums of covalent and van der Waals radii. NCC correlates with E(2) values for Sb−N, Sb−Cl and Sb−Br bonds, and appears to be useful criterion for a preliminary evaluation of the bonding situation.  相似文献   

4.
Melamine (M) is a popular triamine triazine compound in the field of supramolecular materials. In this work, we have computationally investigated how substituents can be exploited to improve the binding strength of M supramolecules. Two types of covalent modifications were studied: the substitution of an H atom within an amine group −NHR, and the replacement of the whole −NH2 group (R=H, F, CH3 and COCH3). Through our dispersion-corrected density functional theory computations, we explain which covalent modification will show the best self-assembling capabilities, and why the binding energy is enhanced. Our charge density and molecular orbital analyses indicate that the best substituents are those that generate a charge accumulation on the endocyclic N atom, providing an improvement of the electrostatic attraction. At the same time the substituent assists the main N−H⋅⋅⋅N hydrogen bonds by interacting with the amino group of the other monomer. We also show how the selected group notably boosts the strength of hexameric rosettes. This research, therefore, provides molecular tools for the rational design of emerging materials based on uneven hydrogen-bonded arrangements.  相似文献   

5.
We have synthesised and characterised 21 new ternary Pb(II) bromides with 16 different pyridine-based organic cations by single crystal XRD measurements. The dominating composition is APbBr3 with 10 representatives, but also 6 examples for APb2Br5 were found. The systematic variation of topological aspects of the organic cations allowed conclusions on the influence of N−H⋅⋅⋅Br hydrogen bridges on the connectivity and bonding situation of the Pb−Br polyhedra. Additionally, it turned out, that further weak ionic interactions can have an influence, if the formation of N−H⋅⋅⋅Br hydrogen bridges is hindered by steric effects. In general, the high versatility of the dominating PbBr6 octahedra, and in some cases higher or lower coordination numbers, allows conclusions on the parameters that influence pattern and extent of the N−H⋅⋅⋅Br bridges as the strongest structure-determining factor. Type and extent of N−H⋅⋅⋅Br bridges have also an impact on the distortion of the PbBr6 octahedra ranging from nearly regular PbBr6 octahedra to 2+2+2 and 1+2+2+1 patterns with significant lone pair activity. Finally, the connectivity mode of the octahedra relates to formation and strength of hydrogen bonds.  相似文献   

6.
Single crystal X-ray diffraction of iodate and bromate salts shows that the I and Br atoms in IO3 and BrO3 anions form short and linear O−I/Br ⋅⋅⋅ O contacts with the O atoms of nearby anions. Non-centrosymmetric systems are formed wherein anions are orderly aligned into supramolecular 1D and 2D networks. Theoretical evidences, namely the outcome of QTAIM and NCIplot studies, prove the attractive nature of these contacts and the ability of iodate and bromate anions to act as robust halogen bond (HaB) donors. The HaB is proposed as a general and effective assisting tool to control the architecture of acentric iodate salts.  相似文献   

7.
Cocrystallizations of diboronic acids [1,3-benzenediboronic acid (1,3-bdba), 1,4-benzenediboronic acid (1,4-bdba) and 4,4’-biphenyldiboronic acid (4,4’-bphdba)] and bipyridines [1,2-bis(4-pyridyl)ethylene (bpe) and 1,2-bis(4-pyridyl)ethane (bpeta)] generated the hydrogen-bonded 1 : 2 cocrystals [(1,4-bdba)(bpe)2] (1), [(1,4-bdba)(bpeta)2] (2), [(1,3-bdba)(bpe)2(H2O)2] (3) and [(1,3-bdba)(bpeta)2(H2O)] (4), wherein 1,3-bdba involved hydrated assemblies. The linear extended 4,4’-bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'-bphdba)(bpe)] (5) and [(4,4'-bphdba-me)(bpeta)] (6). For 6, a hemiester was generated by an in-situ linker transformation. Single-crystal X-ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen-bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D-to-2D single-crystal-to-single-crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.  相似文献   

8.
Ab initio calculation at the MP2/aug-cc-pVTZ level has been performed on the π-hole based NSi tetrel bonded complexes between substituted pyridines and H2SiO. The primary aim of the study is to find out the effect of substitution on the strength and nature of this tetrel bond, and its similarity/difference with the NC tetrel bond. Correlation between the strength of the NSi bond and several molecular properties of the Lewis acid (H2SiO) and base (pyridines) are explored. The properties of the tetrel bond are analyzed using AIM, NBO, and symmetry-adapted perturbation theory calculations. The complexes are characterized with short NSi intermolecular distances and high binding energies ranging between −142.72 and −115.37 kJ/mol. The high value of deformation energy indicates significant geometrical distortion of the monomer units. The AIM and NBO analysis reveal significant coordinate covalent bond character of the N⋅⋅⋅Si π-hole bond. Sharp differences are also noticed in the orbital interactions present in the N⋅⋅⋅Si and N⋅⋅⋅C tetrel bonds.  相似文献   

9.
Due to their potential binding sites, barbituric acid (BA) and its derivatives have been used in metal coordination chemistry. Yet their abilities to recognize anions remain unexplored. In this work, we were able to identify four structural features of barbiturates that are responsible for a certain anion affinity. The set of coordination interactions can be finely tuned with covalent decorations at the methylene group. DFT-D computations at the BLYP-D3(BJ)/aug-cc-pVDZ level of theory show that the C−H bond is as effective as the N−H bond to coordinate chloride. An analysis of the electron charge density at the C−H⋅⋅⋅Cl and N−H⋅⋅⋅Cl bond critical points elucidates their similarities in covalent character. Our results reveal that the special acidity of the C−H bond shows up when the methylene group moves out of the ring plane and it is mainly governed by the orbital interaction energy. The amide and carboxyl groups are the best choices to coordinate the ion when they act together with the C−H bond. We finally show how can we use this information to rationally improve the recognition capability of a small cage-like complex that is able to coordinate NaCl.  相似文献   

10.
What happens when a C−H bond is forced to interact with unpaired pairs of electrons at a positively charged metal? Such interactions can be considered as “contra-electrostatic” H-bonds, which combine the familiar orbital interaction pattern characteristic for the covalent contribution to the conventional H-bonding with an unusual contra-electrostatic component. While electrostatics is strongly stabilizing component in the conventional C−H⋅⋅⋅X bonds where X is an electronegative main group element, it is destabilizing in the C−H⋅⋅⋅M contacts when M is Au(I), Ag(I), or Cu(I) of NHC−M−Cl systems. Such remarkable C−H⋅⋅⋅M interaction became experimentally accessible within (α-ICyDMe)MCl, NHC-Metal complexes embedded into cyclodextrins. Computational analysis of the model systems suggests that the overall interaction energies are relatively insensitive to moderate variations in the directionality of interaction between a C−H bond and the metal center, indicating stereoelectronic promiscuity of fully filled set of d-orbitals. A combination of experimental and computational data demonstrates that metal encapsulation inside the cyclodextrin cavity forces the C−H bond to point toward the metal, and reveals a still attractive “contra-electrostatic” H-bonding interaction.  相似文献   

11.
As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well-studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of 1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described.  相似文献   

12.
The isocyanide trans-[PdBr2(CNC6H4-4-X′)2] (X′=Br, I) and nitrile trans-[PtX2(NCC6H4-4-X′)2] (X/X′=Cl/Cl, Cl/Br, Br/Cl, Br/Br) complexes exhibit similar structural motif in the solid state, which is determined by hitherto unreported four-center nodes formed by cyclic halogen bonding. Each node is built up by four Type II C−X′⋅⋅⋅X−M halogen-bonding contacts and include one Type I M−X⋅⋅⋅X−M interaction, thus giving the rhombic-like structure. These nodes serve as supramolecular synthons to form 2D layers or double chains of molecules linked by a halogen bond. Results of DFT calculations indicate that all contacts within the nodes are typical noncovalent interactions with the estimated strengths in the range 0.6–2.9 kcal mol−1.  相似文献   

13.
Aiming at the preparation of one-dimensional (1D) chalcogen-bonded supramolecular polymers at the solid state, this work describes the different syntheses which have been challenged to obtain ditopic molecular modules. At first, tellurazolopyridyl (TZP) rings have been chosen as recognition units, given their well-proven ability and persistency to self-assemble through double Te⋅⋅⋅N chalcogen bonds (ChBs). The second synthetic strategy dealt with the preparation of pyridyl-modified ebselen Te-containing analogues. By attempting several synthetic protocols, the targeted ebselen derivatives could not be obtained, whereas an unexpected Te-containing lactone as well as a spiro-type Te(IV)-containing derivatives were isolated, with the latter investigated by X-ray diffraction (XRD) analysis.  相似文献   

14.
The rational design of self-assembling organic materials is extremely challenging due to the difficulty in precisely predicting solid-state architectures from first principles, especially if synthons are conformationally flexible. A tractable model system to study self-assembly was constructed by appending cyclopropanoyl caps to the N termini of helical α/β-peptide foldamers, designed to form both N−H⋅⋅⋅O and Cα−H⋅⋅⋅O hydrogen bonds, which then rapidly self-assembled to form foldectures (foldamer architectures). Through a combined analytical and computational investigation, cyclopropanoyl capping was observed to markedly enhance self-assembly in recalcitrant substrates and direct the formation of a single intermolecular N−H⋅⋅⋅O/Cα−H⋅⋅⋅O bonding motif in single crystals, regardless of peptide sequence or foldamer conformation. In contrast to previous studies, foldamer constituents of single crystals and foldectures assumed different secondary structures and different molecular packing modes, despite a conserved N−H⋅⋅⋅O/Cα−H⋅⋅⋅O bonding motif. DFT calculations validated the experimental results by showing that the N−H⋅⋅⋅O/Cα−H⋅⋅⋅O interaction created by the cap was sufficiently attractive to influence self-assembly. This versatile strategy to harness secondary noncovalent interactions in the rational design of self-assembling organic materials will allow for the exploration of new substrates and speed up the development of novel applications within this increasingly important class of materials.  相似文献   

15.
A series of 4-halogeno aniline derivatives was studied employing combined theoretical and experimental methods (i. e. crystal structure analysis and vibrational spectroscopies). This simplified model system was selected to shed light on the impact of fluorine substitution on the formation of noncovalent interactions such as halogen bonds (XBs) and hydrogen bonds (HBs), which are key interactions in fluorinated/halogenated drug-protein complex formation. Comparative analysis of three previously reported and five newly determined crystal structures indicated that, in most cases, 2-fluoro and 2,6-difluoro substitution of 4-X anilines increases the ability of adjacent amine to form strong N−H⋅⋅⋅N HBs. Additionally, fluorine substituents in the difluorinated derivatives are competitive and attractive HB and XB acceptors and increase the probability of halogen-halogen contacts. A peculiar observation was made for 4-iodoaniline and 2,6-difluoro-4-iodoaniline, which form distinct interaction patterns compared to the corresponding 4-Cl and 4-Br analogs. The observed intramolecular N−H⋅⋅⋅F interactions lead to additional NH bands in the FT-IR spectra.  相似文献   

16.
The role of halogen bonds in self‐assembled networks for systems with Br and I ligands has recently been studied with scanning tunneling microscopy (STM), which provides physical insight at the atomic scale. Here, we study the supramolecular interactions of 1,5‐dichloroanthraquinone molecules on Au(111), including Cl ligands, by using STM. Two different molecular structures of chevron and square networks are observed, and their molecular models are proposed. Both molecular structures are stabilized by intermolecular Cl???H and O???H hydrogen bonds with marginal contributions from Cl‐related halogen bonds, as revealed by density functional theory calculations. Our study shows that, in contrast to Br‐ and I‐related halogen bonds, Cl‐related halogen bonds weakly contribute to the molecular structure due to a modest positive potential (σ hole) of the Cl ligands.  相似文献   

17.
The ability to tune the optical features of BODIPY materials in the solid state is essential for their photorelated application and requires efficient control of the crystal packing. In this study, such control of BODIPY supramolecular assemblies was achieved by deliberate design and synthesis of a BODIPY containing a strong halogen-bond (XB) acceptor (−NO2) and donor (I, Br) to mediate XB interactions. The di-halogenated structures formed isostructural mono-coordinate motif B3 , B4 (1D tubular structure) and symmetric bifurcated motif B4-II (1D zigzag chains structure) through N−O⋅⋅⋅I, Br XB interactions. These XB interactions promote singlet-to-triplet intersystem crossing and triplet-to-singlet reverse intersystem crossing due to partial delocalization of oxygen electrons onto Br and I, which leads to unexpected fluorescence enhancement of B4-II . Finally, the indirect optical band gaps of B3 , B4 and B4-II were amenable to tuning in the range of 1.85–2.50 eV by XB-driven crystal packings.  相似文献   

18.
Ordered materials with predictable structures and properties can be made by a modular approach, using molecules designed to interact with neighbors and hold them in predetermined positions. Incorporating 4,6-diamino-1,3,5-triazin-2-yl (DAT) groups in modules is an effective way to direct assembly because each DAT group can form multiple N−H⋅⋅⋅N hydrogen bonds according to established patterns. We have found that modules with high densities of N(DAT)2 groups can be made by base-induced double triazinylations of readily available amines. The resulting modules can form structures held together by remarkably large numbers of hydrogen bonds per molecule. Even simple modules with only 1–3 N(DAT)2 groups and fewer than 70 non-hydrogen atoms can crystallize to form highly open networks in which each molecule engages in over 20 N−H⋅⋅⋅N hydrogen bonds, and more than 70 % of the volume is available for accommodating guests. In favorable cases, guests can be removed to create rigorously porous crystalline solids analogous to zeolites and metal–organic frameworks.  相似文献   

19.
Research on new supramolecular synthons facilitates the progress of materials design. Herein, the ability of sp2 carbonyl oxygen atoms to act as halogen-bond acceptors was established through cocrystallization. Four sets of carbonyl compounds, including aldehydes, ketones, esters, and amides, were selected as halogen-bond acceptors. In the absence of strong hydrogen bonds, 14 out of 16 combinations of halogen-bond donors and acceptors could form cocrystals, whereby the supramolecular synthon C=O ⋅⋅⋅ X acts as the main interaction. Further, the geometric parameters of the C=O ⋅⋅⋅ X interaction were statistically revealed on the basis of the crystallographic database. The bifurcated interaction mode that has been observed in other halogen-bond synthons rarely occurs in the case of C=O ⋅⋅⋅ X. The robustness of C=O ⋅⋅⋅ X makes its application in crystal engineering possible and opens up new opportunities in designing multicomponent fluorescent materials, as indicated by multicolor emission of cocrystals D through C=O ⋅⋅⋅ X interactions.  相似文献   

20.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号