首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Novel BODIPY photosensitizers were developed for imaging‐guided photodynamic therapy. The introduction of a strong electron donor to the BODIPY core through a phenyl linker combined with the twisted arrangement between the donor and the BODIPY acceptor is essential for reducing the energy gap between the lowest singlet excited state and the lowest triplet state (ΔEST), leading to a significant enhancement in the intersystem crossing (ISC) of the BODIPYs. Remarkably, the BDP‐5 with the smallest ΔEST (ca. 0.44 eV) exhibited excellent singlet oxygen generation capabilities in both organic and aqueous solutions. BDP‐5 also displayed bright emission in the far‐red/near‐infrared region in the condensed states. More importantly, both in vitro and in vivo studies demonstrated that BDP‐5 NPs displayed a high potential for photodynamic cancer therapy and bioimaging.  相似文献   

2.
The efficiency of the intersystem crossing process can be improved by reducing the energy gap between the singlet and triplet excited states (ΔE ST), which offers the opportunity to improve the yield of the triplet excited state. Herein, we demonstrate that modulation of the excited states is also an effective strategy to regulate the singlet oxygen generation of photosensitizers. Based on our previous studies that photosensitizers with aggregation-induced emission characteristics (AIE) showed enhanced fluorescence and efficient singlet oxygen production in the aggregated state, a series of AIE fluorogens such as TPDC, TPPDC and PPDC were synthesized, which showed ΔE ST values of 0.48, 0.35 and 0.27 eV, respectively. A detailed study revealed that PPDC exhibited the highest singlet oxygen efficiency (0.89) as nanoaggregates, while TPDC exhibited the lowest efficiency (0.28), inversely correlated with their ΔE ST values. Due to their similar optical properties, TPDC and PPDC were further encapsulated into nanoparticles (NPs). Subsequent surface modification with cell penetrating peptide (TAT) yielded TAT–TPDC NPs and TAT–PPDC NPs. As a result of the stronger singlet oxygen generation, TAT–PPDC NPs showed enhanced cancer cell ablation as compared to TAT–TPDC NPs. Fine-tuning of the singlet-triplet energy gap is thus proven to be an effective new strategy to generate efficient photosensitizers for photodynamic therapy.  相似文献   

3.
《化学:亚洲杂志》2017,12(18):2447-2456
Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso ‐aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady‐state and time‐resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron‐donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl‐BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors.  相似文献   

4.
Orthogonal phenoxazine-styryl BODIPY compact electron donor/acceptor dyads were prepared as heavy atom-free triplet photosensitizers (PSs) with strong red light absorption (ϵ=1.33×105 M−1 cm−1 at 630 nm), whereas the previously reported triplet photosensitizers based on the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism show absorption in a shorter wavelength range (<500 nm). More importantly, a long-lived triplet state (τT=333 μs) was observed for the new dyads. In comparison, the triplet state lifetime of the same chromophore accessed with the conventional heavy atom effect (HAE) is much shorter (τT=1.8 μs). Long triplet state lifetime is beneficial to enhance electron or energy transfer, the primary photophysical processes in the application of triplet PSs. Our approach is based on SOCT-ISC, without invoking of the HAE, which may shorten the triplet state lifetime. We used bisstyrylBodipy both as the electron acceptor and the visible light-harvesting chromophore, which shows red-light absorption. Femtosecond transient absorption spectra indicated the charge separation (109 ps) and SOCT-ISC (charge recombination, CR; 2.3 ns) for BDP-1 . ISC efficiency of BDP-1 was determined as ΦT=25 % (in toluene). The dyad BDP-3 was used as triplet PS for triplet-triplet annihilation upconversion (upconversion quantum yield ΦUC=1.5 %; anti-Stokes shift is 5900 cm−1).  相似文献   

5.
In the field of organic light-emitting diodes, thermally activated delayed fluorescence (TADF) materials have achieved great performance. The key factor for this performance is the small energy gap (ΔEST) between the lowest triplet (T1) and singlet excited (S1) states, which can be realized in a well-separated donor-acceptor system. Such systems are likely to possess similar charge transfer (CT)-type T1 and S1 states. Recent investigations have suggested that the intervention of other type-states, such as locally excited triplet state(s), is necessary for efficient reverse intersystem crossing (RISC). Here, we theoretically and experimentally demonstrate that our blue TADF material exhibits efficient RISC even between singlet CT and triplet CT states without any additional states. The key factor is dynamic flexibility of the torsion angle between the donor and acceptor, which enhances spin-orbit coupling even between the charge transfer-type T1 and S1 states, without sacrificing the small ΔEST. This results in excellent photoluminescence and electroluminescence performances in all the host materials we investigate, with sky-blue to deep-blue emissions. Among the hosts investigated, the deepest blue emission with CIE coordinates of (0.15, 0.16) and the highest EQEMAX of 23.9 % are achieved simultaneously.  相似文献   

6.
The singlet—triplet energy splitting (ΔE ST = E S E T ) was calculated for formylnitrene (5) and for the syn- and anti-rotamers of carboxynitrene HOC(O)N (6) by the CCSD(T) method. Extrapolation of ΔE ST to a complete basis set was calculated to be negative for 5 and strongly positive for 6. Similar results were obtained by the G2 procedure. The reason for the dramatic stabilization of the singlet state appeared to be a special bonding interaction between the nitrogen and oxygen atoms, which results in the structure intermediate between those of nitrene and oxazirene. It was found that the B3LYP/6-31G(d) method overestimates ΔE ST by ∼9 kcal mol−1 for 5 and by ∼7 kcal mol−1 for 6. Taking into account this overestimation and the results of DFT calculations, it was concluded that benzoylnitrene has a singlet ground state. It was proved experimentally using photolysis of benzoyl azide in an argon matrix at 12 K that benzoylnitrene has a singlet ground state and its structure is similar to that of oxazirene. Nevertheless, these singlet intermediates have low barrier to the aziridine formation, which is traditionally considered to be a typical singlet nitrene reaction.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 519–526, March, 2005.  相似文献   

7.
The spectral–luminescent, photophysical, and photochemical properties of dichloro-, dibromo-, and diiodo-derivatives of boron dipyrromethenate (BODIPY) have been studied, as well as the feasibility of generating singlet oxygen (1O2) via its photosensitization by the dihalogenated derivatives of BF2 dipyrromethene in solutions. Quantum yields of singlet oxygen have been determined using 1,3-diphenylisobenzofuran as the 1O2 trap. The lowest fluorescence quantum yields have been shown to correspond to the maximum yields of singlet oxygen. It has been found that the best 1O2 photosensitizer among the three test dihalotetraphenylaza- BODIPY is dibromotetraphenylaza-BODIPY, which in addition possesses the highest photostability. Diiodotetramethyl-BODIPY results in the singlet oxygen yield close to unity, but it has significantly lower photostability. The yield of singlet oxygen is affected by the solvent. Dibromtetraphenylaza-BODIPY and diiodotetramethyl-BODIPY may find use as a medium in photodynamic therapy and photocatalysis of oxidation reactions.  相似文献   

8.
Issue concerning accurate prediction of the reverse intersystem crossing rate (kRISC) is critical for developing novel efficient thermally activated delayed fluorescence (TADF) materials. In this contribution, the kRISC rates from the lowest excited triplet T1 state to the lowest excited singlet S1 state were evaluated for five donor-π-acceptor-type pyrimidine-based TADF emitters using the semiclassical Marcus theory. Both the singlet-triplet energy difference (ΔEST) and spin–orbit coupling (V) between the S1 and T1 states were investigated by performing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In addition, their fluorescence emission wavelengths (λem) were also calculated at the TD-DFT level. The predicted kRISC and λem values are found to reproduce well the available experimental findings. The present results reveal that the kRISC rates of molecules possessing the unsymmetrical diphenyl pyrimidine acceptor core are calculated to be slightly larger than those of their analogues with the symmetrical diphenyl pyrimidine. In addition, introducing two tert-butyl groups into the 2,7-positions of the donor moiety of the latter is also an effective method for increasing kRISC when designing TADF emitters. Such a difference is related to the nature of the T1 excited state. A more remarkable charge-transfer (CT) contribution to the state can achieve a smaller ΔEST, leading to a more efficient RISC process, and consequently a shorter delayed fluorescence lifetime as observed experimentally. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
A new family of thermally activated delayed fluorescence (TADF) emitters based on U‐shaped D‐A‐D architecture with a novel accepting unit has been developed. All investigated compounds have small singlet‐triplet energy splitting (ΔEST) ranging from 0.02 to 0.20 eV and showed efficient TADF properties. The lowest triplet state of the acceptor unit plays the key role in the TADF mechanism. OLEDs fabricated with these TADF emitters achieved excellent efficiencies up to 16 % external quantum efficiency (EQE).  相似文献   

10.
Two kinds of polystyrene-based through-space charge transfer (TSCT) polymers consisting of spatially-separated acridan donor moieties bearing phenyl or naphthyl substituents and triazine acceptor moieties are designed and synthesized. It is found that TSCT polymers containing phenyl-substituted acridan donors exhibit high-lying singlet (S1) and triplet (T1) states with small singlet-triplet energy splitting (∆EST) of 0.040.05 eV, resulting in thermally activated delayed fluorescence (TADF) with reverse intersystem crossing rate constants of 1.11.2 × 106 s−1. In contrast, polymers bearing naphthyl-substituted acridan donors, although still having TSCT emission, exhibit no TADF effect because of the large ∆EST of 0.300.33 eV induced by low-lying locally excited T1 state of naphthyl donor moiety. Solution-processed organic light-emitting diodes using TSCT polymers containing phenyl-substituted acridan donors reveal sky-blue emission at 483 nm together with maximum external quantum efficiency (EQE) of 11.3%, which is about 30 times that of naphthyl-substituted counterpart with maximum EQE of 0.38%, shedding light on the importance of high triplet energy level of donor moiety on realizing TADF effect and high device efficiency for through-space charge transfer polymer.  相似文献   

11.
Pure organic materials with ultralong room‐temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, they generally show inefficient intersystem crossing (ISC) owing to weak spin–orbit coupling (SOC). A design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism was used to obtain efficient and ultralong RTP materials. The meta isomer of carbazole‐substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1 %. Study of the structure–property relationship shows that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1.  相似文献   

12.
A large solvent polarity effect on the rate of singlet to triplet intersystem crossing (kST) has been observed in the carbenes, diphenylcarbene (DPC) and dicycloheptadienylidene (DCHD). It is found that both kST and the energy splitting (ΔEST) separtaing the singlet and triplet states decrease as the solvent polarity increases for the aromatic carbenes. This “inverse” gap effect, i.e. the time for intersystem crossing decreases with increasing energy gap, is explained by an off-resonance intersystem crossing from the singlet to a sparse triplet vibronic manifold characteristic of a small energy gap. The trend in ΔEST, which is proposed to be responsible for the variation in kST for DPC, DCHD and structurally related aromatic carbenes, is suggested to arise from the variation in the bond angle of the central methylene carbon atom.  相似文献   

13.
Here, we designed several waterborne polyurethanes (WPUs) with efficient thermally activated delayed fluorescence (TADF) via serving charge‐transfer (CT) states as a mediate bridge between singlet and triplet states to boost reverse intersystem crossing (RISC). By tuning substituents of diphenyl sulfone (DS), we found that O,O′‐ and S,S′‐substituted DS covalently incorporated in WPUs solely show typical fluorescence emission with lifetimes in the nanosecond range. Interestingly, TADF appears by replacing the substituent with the nitrogen atom, of which lifetimes are up to ≈10 microseconds and ≈1 millisecond in air and vacuum, respectively, even though the energy gap between singlet and triplet states (ΔEST) is still large for generating TADF. To explain this phenomenon, an energy level mode based on CT states and an 3(n‐π*) receiver state was proposed. By the rational modulation of CT states, it is possible to tune the ΔEST to render TADF‐based materials suitable for versatile applications.  相似文献   

14.
Pnictinidenes are an increasingly relevant species in main group chemistry and generally exhibit proclivity for the triplet electronic ground state. However, the elusive singlet electronic states are often desired for chemical applications. We predict the singlet-triplet energy differences (ΔEST=ESinglet−ETriplet) of simple group 15 and 16 substituted pnictinidenes (Pn−R; Pn=P, As, Sb, or Bi) with highly reliable focal-point analyses targeting the CCSDTQ/CBS level of theory. The only cases we predict to have favorable singlet states are P−PH2 (−3.2 kcal mol−1) and P−NH2 (−0.2 kcal mol−1). ΔEST trends are discussed in light of the geometric predictions as well as qualitative natural bond order analysis to elucidate some of the important electronic structure features. Our work provides a rigorous benchmark for the ΔEST of fundamental Pn−R moieties and provides a firm foundation for the continued study of heavier pnictinidenes.  相似文献   

15.
Boron dipyrromethene (BODIPY) dyes represent a particular class within the broad array of potential photosensitizers. Their highly fluorescent nature opens the door for theragnostic applications, combining imaging and therapy using a single, easily synthesized chromophore. However, near-infrared absorption is strongly desired for photodynamic therapy to enhance tissue penetration. Furthermore, singlet oxygen should preferentially be generated without the incorporation of heavy atoms, as these often require additional synthetic efforts and/or afford dark cytotoxicity. Solutions for both problems are known, but have never been successfully combined in one simple BODIPY material. Here, we present a series of compact BODIPY-acridine dyads, active in the phototherapeutic window and showing balanced brightness and phototoxic power. Although the donor–acceptor design was envisioned to introduce a charge transfer state to assist in intersystem crossing, quantum-chemical calculations refute this. Further photophysical investigations suggest the presence of exciplex states and their involvement in singlet oxygen formation.  相似文献   

16.
A covalently linked BODIPY−fullerene C60 dyad (BDP−C60) was synthesized as a two-segment structure, which consists of a visible light-harvesting antenna attached to an energy or electron acceptor moiety. This structure was designed to improve the photodynamic action of fullerene C60 to inactivate bacteria. The absorption spectrum of BDP−C60 was found to be a superposition of the spectra of its constitutional moieties, whereas the fluorescence emission of the BODIPY unit was strongly quenched by the fullerene C60. Spectroscopic, calculations, and redox studies indicate a competence between photoinduced energy and electron transfer. Protonating the dimethylaminophenyl substituent through addition of an acidic medium led to a substantial increase in the fluorescence emission, triplet excited state formation, and singlet molecular oxygen production. At physiological pH, photosensitized inactivation of Staphylococcus aureus mediated by 1 μM BDP−C60 exhibited a 4.5 log decrease of cell survival (>99.997 %) after 15 min irradiation. A similar result was obtained with Escherichia coli using 30 min irradiation. Moreover, proton-activated photodynamic action of BDP−C60 turned this dyad into a highly effective photosensitizer to eradicate E. coli. Therefore, BDP−C60 is an interesting photosensitizing structure in which the light-harvesting antenna effect of the BODIPY unit combined with the protonation of dimethylaminophenyl group can be used to improve the photoinactivation of bacteria.  相似文献   

17.
We have observed the generation of sumanenylidene ( 2 ), a divalent, neutral‐carbon species at the benzylic position of sumanene ( 1 ). We also clarified both experimentally and theoretically that the ground state of compound 2 was a triplet state and that its singlet–triplet energy gap (ΔEST) was similar to that in fluorenylidene. The curved structure of compound 2 led to slightly better spin delocalization over the two adjacent aromatic rings than in planar systems, because of the unpaired spins on the σ and π orbitals. Synthetic application of the carbene precursor, diazosumanene ( 5 ), with a variety of thiocarbonyl compounds revealed its utility for the preparation of tetrasubstituted alkene compounds (e.g., that contain a strongly electron‐donating unit) that are directly conjugated to the sumanene ( 1 ) moiety.  相似文献   

18.
A new series of aza‐BODIPY derivatives ( 4 a – 4 c , 5 a , c , and 6 b , c ) were synthesized and their excited‐state properties, such as their triplet excited state and the yield of singlet‐oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core‐substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet‐oxygen generation when compared to the peripheral‐substituted systems. The dye 6 c , which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (ΦT=0.86) and of the efficiency of singlet‐oxygen generation (ΦΔ=0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza‐BODIPY systems is that they are stable under irradiation conditions, possess strong red‐light absorption (620–680 nm), exhibit high yields of singlet‐oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.  相似文献   

19.
For a singlet–triplet coupled molecular system, the efficiency of forward and reverse intersystem crossing processes can be enhanced by reducing the energy gap between the singlet and triplet excited states (ΔEST), thus prolonging the exciton lifetimes. This has been proven beneficial for many emerging applications such as molecular luminescence, optoelectronics, and photonics. Here, a strategy is proposed to create small ΔEST by polymerizing fluorescent dye molecules, the efficacy of which is justified by density functional theory calculations and ultrafast spectroscopy. Thus, singlet–triplet exciton communication through polymerization‐enhanced intersystem crossing is also proposed.

  相似文献   


20.
Two diastereomeric tetraphenylporphyrinyl-ω-hypericinyl-ethylenes were prepared and their properties investigated. The (Z)-diastereomer displayed an even higher photosensitization of singlet oxygen and/or reactive oxygen species than hypericin, whereas the (E)-configured derivative showed a somewhat weaker effect. Accordingly, hybridization of hypericin and porphyrin chromophores seems to be a promising target for the development of novel sensitizers for photodynamic therapy. Correspondence: Heinz Falk, Department of Organic Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria, Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号