首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered π‐columnar structures found in covalent organic frameworks (COFs) render them attractive as smart materials. However, external‐stimuli‐responsive COFs have not been explored. Here we report the design and synthesis of a photoresponsive COF with anthracene units as the photoresponsive π‐building blocks. The COF is switchable upon photoirradiation to yield a concavo‐convex polygon skeleton through the interlayer [4π+4π] cycloaddition of anthracene units stacked in the π‐columns. This cycloaddition reaction is thermally reversible; heating resets the anthracene layers and regenerates the COF. These external‐stimuli‐induced structural transformations are accompanied by profound changes in properties, including gas adsorption, π‐electronic function, and luminescence. The results suggest that COFs are useful for designing smart porous materials with properties that are controllable by external stimuli.  相似文献   

2.
3.
4.
A novel type of ionic covalent organic framework (ICOF), which contains sp3 hybridized boron anionic centers and tunable countercations, was constructed by formation of spiroborate linkages. These ICOFs exhibit high BET surface areas up to 1259 m2 g?1 and adsorb a significant amount of H2 (up to 3.11 wt %, 77 K, 1 bar) and CH4 (up to 4.62 wt %, 273 K, 1 bar). Importantly, the materials show good thermal stabilities and excellent resistance to hydrolysis, remaining nearly intact when immersed in water or basic solution for two days. The presence of permanently immobilized ion centers in ICOFs enables the transportation of lithium ions with room‐temperature lithium‐ion conductivity of 3.05×10?5 S cm?1 and an average Li+ transference number value of 0.80±0.02. Our approach thus provides a convenient route to highly stable COFs with ionic linkages, which can potentially serve as absorbents for alternative energy sources such as H2, CH4, and also as solid lithium electrolytes/separators for the next‐generation lithium batteries.  相似文献   

5.
Organic lithium ion batteries (LIBs) are considered as one of the next-generation green electrochemical energy storage (EES) devices. However, obtaining both high capacity and long-term cyclability is still the bottleneck of organic electrode materials for LIBs because of weak structural and chemical stability and low conductivity. Covalent organic frameworks (COFs) show potential to overcome these problems owing to its good stability and high capacity. Herein, the synthesis and characterization of two π-conjugated COFs, derived from the Schiff-base reaction of 2,4,6-triaminopyrimidne (TM) respectively with 1,4-phthalaldehyde (PA) and 1,3,5-triformylbenzene (TB) by a mechanochemical process are presented. As anode materials for LIBs, the COFs exhibit favorable electrochemical performance with the highest reversible discharge capacities of up to 401.3 and 379.1 mAh g−1 at a high current density (1 A g−1), respectively, and excellent long-term cyclability with 74.8 and 72.7 % capacity retention after 2000 cycles compared to the initial discharge capacities.  相似文献   

6.
Two‐dimensional covalent organic frameworks (2D COFs) provide a unique platform for the molecular design of electronic and optoelectronic materials. Here, the synthesis and characterization of an electroactive COF containing the well‐known tetrathiafulvalene (TTF) unit is reported. The TTF‐COF crystallizes into 2D sheets with an eclipsed AA stacking motif, and shows high thermal stability and permanent porosity. The presence of TTF units endows the TTF‐COF with electron‐donating ability, which is characterized by cyclic voltammetry. In addition, the open frameworks of TTF‐COF are amenable to doping with electron acceptors (e.g., iodine), and the conductivity of TTF‐COF bulk samples can be improved by doping. Our results open up a reliable route for the preparation of well‐ordered conjugated TTF polymers, which hold great potential for applications in fields from molecular electronics to energy storage.  相似文献   

7.
As an important member of crystalline porous polymers, acylhydrazone-linked covalent organic frameworks (COFs) have gained much attention in recent years. However, the low structural stability imparts a limit on their practical applications. To tackle this problem, we report a simple strategy to increase the chemical stability of acylhydrazone-linked COFs by incorporating azobenzene groups in the conjugated framework. Through reinforcing the π-π stacking interactions between the adjacent layers with increased π-surface, it is surprising to find that the resulting materials exhibit extreme stability in harsh environments, such as in strong acid, strong base, aqueous educing agent and boiling water, even exposed to air for one year. As a proof-of-concept, such frameworks have been used to remove various organic micropollutants such as antibiotics, plastic components, endocrine disruptors, and carcinogens from water with high capacity, fast speed and excellent reusability over a wide pH range at environmentally relevant concentrations. The results provide a new avenue to significantly enhance the stability of COFs for practical applications.  相似文献   

8.
Nitrogen-linked hexaazatrinaphthylene polymer ( N2-HATN ) as organic cathode material with low HOMO–LOMO gap was synthesized and was observed to possess reversible high capacity and unexpected long-term cycling stability. The pre-treated N2-HATN and pRGO combination demonstrated good structure compatibility and the resultant cathode exhibited a constant increment of capacity during the redox cycles. The initial capacity at 0.05 A g−1 was 406 mA h−1 g−1, and increased to 630 mA h−1 g−1 after 70 cycles. At 0.5 A g−1 discharging rate, the capacity increased from an initial value of 186 mA h−1 g−1 to 588 mA h−1 g−1 after 1600 cycles. The pseudocapacitance-type behavior is postulated to be attributed to the structure compatibility between the active material and pRGO.  相似文献   

9.
10.
Multi-dimensional metal oxides have attracted great attention in diverse applications due to their intriguing performances. However, their structural design remains challenging, particularly that based on organic chelation chemistry. Although metal–organic complexes with different architectures have been reported, their structure formation mechanisms are not well understood because of the complex chelation processes. Herein, we introduce a new metal–organic coordination strategy to construct metal-decorated (Ni, Co, Mn) Mo-based complexes ranging from 2D nanopetals to 3D microflowers. The chelating process of the metal–organic complex can be tuned by a surfactant, giving rise to different structures, and then a further metal can be appended. Thus, different metal (oxide)-decorated MoO2/C-N structures were designed, enabling an extremely high lithium storage capability of 1018 mA h g−1 and rate capacities of up to 10 A g−1 over 1000 cycles. Relationships between electrochemical behavior and structure have been analyzed kinetically. A high-rate lithium-ion battery has been assembled from Ni-MoO2/C-N and an Ni-rich layered oxide as the anode and cathode, respectively. We believe that this general metal–organic coordination strategy should be applicable to other multi-functional materials with superior capabilities.  相似文献   

11.
The metalloid-centered covalent organic framework has attracted great interest from both its structure and application. Heavier elements have seldomly been incorporated in the covalent organic frameworks, even if they exhibit special structural features and properties. Herein, we reported the first crystalline germanate covalent organic framework with hexacoordinated germanate linked by an anthracene linker. The existence of counterion lithium ions in the framework provides a high CO2 uptake of 88.5 cm3 g−1 at 273 K and a high CO2/N2 selectivity of 101. A significantly improved lithium ion conductivity of 0.25 mS cm−1 at room temperature was observed due to the soft germanium center.  相似文献   

12.
杨杰瑞  孟爽  杨云慧 《化学通报》2023,86(7):798-806,797
共价有机框架材料(Covalent Organic Frameworks,COFs)是由有机结构单元通过共价键连接的具有期性结构的多孔化合物。共价有机框架材料具有永久的孔隙、高的比表面积、可调的孔径、易于功能化和高的水热稳定性等优点,广泛应用于许多领域。本文总结了COFs目前主要的合成方法,介绍了COFs在吸附领域的应用和发展。最后,文章指出未来的研究重点是发展更多有机反应和键连方式,合成具有高度稳定性和结晶度、成本低廉的功能性材料。  相似文献   

13.
席夫碱共价有机骨架材料(Schiff-base COFs)是根据Schiff-base反应原理缩合形成的一类COFs材料。Schiff-base COFs具有骨架密度低、比表面积大、孔径尺寸可控、有机单体种类丰富、合成方法灵活多样、表面化学性质可功能化,易于引入特定的分子识别位点,以及物理化学稳定性优异等特征。Schiff-base COFs在气体吸附/储存、传感、催化、光电材料和前处理介质等诸多领域有重要的应用前景,成为材料科学领域的研究热点。本文主要综述了近年来Schiff-base COFs材料的合成类型、制备方法,以及该材料在不同领域的应用研究进展。最后,总结了该材料的研究现状并展望了该研究领域未来的发展方向和应用前景。  相似文献   

14.
Ca2+, a ubiquitous but nuanced modulator of cellular physiology, is meticulously controlled intracellularly. However, intracellular Ca2+ regulation, such as mitochondrial Ca2+ buffering capacity, can be disrupted by 1O2. Thus, the intracellular Ca2+ overload, which is recognized as one of the important cell pro‐death factors, can be logically achieved by the synergism of 1O2 with exogenous Ca2+ delivery. Reported herein is a nanoscale covalent organic framework (NCOF)‐based nanoagent, namely CaCO3@COF‐BODIPY‐2I@GAG ( 4 ), which is embedded with CaCO3 nanoparticle (NP) and surface‐decorated with BODIPY‐2I as photosensitizer (PS) and glycosaminoglycan (GAG) targeting agent for CD44 receptors on digestive tract tumor cells. Under illumination, the light‐triggered 1O2 not only kills the tumor cells directly, but also leads to their mitochondrial dysfunction and Ca2+ overload. An enhanced antitumor efficiency is achieved via photodynamic therapy (PDT) and Ca2+ overload synergistic therapy.  相似文献   

15.
Recently, it has become very important to develop cost-effective anode materials for the large-scale use of lithium-ion batteries (LIBs). Polyoxometalates (POMs) have been considered as one of the most promising alternatives for LIB electrodes owing to their reversible multi-electron-transfer capacity. Herein, Keggin-type [PMo12O40]3− (donated as PMo12) clusters are anchored onto a 3D microporous carbon framework derived from ZIF-8 through electrostatic interactions. The PMo12 clusters can be immobilized steadily and uniformly on the carbon framework, which provides enhanced electrical conductivity and high stability. Compared with PMo12 itself, the as-prepared novel 3D Carbon-PMo12 composite displays a significantly improved Li-ion storage performance as an LIB anode, with excellent reversible specific capacity and rate capacity, as well as high cycling performance (discharge capacity of 985 mA h g−1 after 200 cycles), which are superior to other POM-based anode materials reported so far. The high performance of the Carbon-PMo12 composite can be attributed to the 3D conductive network with fast electron transport, high ratio of pseudocapacitive contribution, and evenly distributed PMo12 clusters with reversible 24-electron transfer capacity. This work offers a facile way to explore novel LIB anodes consisting of electroactive molecule clusters.  相似文献   

16.
We report a new strategy to construct porous carbon nitride (PCN) by embedding a heptazine unit–the primary building block of carbon nitride–into the backbone of a covalent organic framework (COF). The strategy results in a new type of PCN which bears a fibrous morphology, high surface area and wide visible absorption. The photocatalytic performance was evaluated by photodegradation of an organic dye. We found that the introduction of the heptazine unit has a prominent effect on the catalytic activity, which demonstrates an effective strategy to prepare carbon nitride materials. This work opens up a new way for the preparation of carbon nitride for photocatalysis applications.  相似文献   

17.
Developing graphene-like two-dimensional materials naturally possessing a band gap has sparked enormous interest. Thanks to the inherent wide band gap and high mobility in the 2D plane, covalent organic frameworks containing triazine rings (t-COFs) hold great promise in this regard, whilst the synthesis of single-layer t-COFs remains highly challenging. Herein, we present the fabrication of a well-defined graphene-like t-COF on Au(111). Instead of single/multiple-step single-type reactions commonly applied for on-surface synthesis, distinct stepwise on-surface reactions, including alkynyl cyclotrimerization, C−O bond cleavage, and C−H bond activation, are triggered on demand, leading to product evolution in a controlled step-by-step manner. Aside from the precise control in sophisticated on-surface synthesis, this work proposes a single-atomic-layer organic semiconductor with a wide band gap of 3.41 eV.  相似文献   

18.
Instead of using organic solvents, a deep eutectic solvent (DES) composed of tetrabutylammonium bromide and imidazole (Bu4NBr/Im) was employed as a solvent for the first time to synthesize covalent organic frameworks (COFs). Due to the low vapor pressure of the Bu4NBr/Im-based DES, a new carboxyl-functionalized COF (TpPa-COOH) was synthesized under environmental pressure. The as-synthesized TpPa-COOH has open channels, and the DES can be removed completely from the pores. The dye adsorption performance of TpPa-COOH was examined for three organic dyes with similar molecular sizes: one anionic dye (eosin B, EB) and two cationic dyes (methylene blue, MB and safranine T, ST). TpPa-COOH showed an excellent selective adsorption effect on MB and ST. The electronegative keto form in TpPa-COOH might help to form electrostatic and π–π interactions between the π-stacking frameworks of TpPa-COOH and the positive plane MB and ST molecules. The adsorption isotherms of MB and ST on TpPa-COOH were further investigated in detail, and the equilibrium adsorption was well modeled by using a Langmuir isotherm model. Together with hydrogen bonding, TpPa-COOH showed higher adsorption capacity for ST than for MB (1135 vs. 410 mg g−1). These results could provide a guidance for the green synthesis of adsorbents in removing organic dyes from wastewater.  相似文献   

19.
20.
选用理论容量高达446 mAh·g~(-1)的杯[4]醌(calix[4]quinone,C4Q)作为正极材料,研究其储锂性能。由于C4Q在常规有机电解液中的溶解问题会在一定的程度上限制其性能最大化,我们选用Li[TFSI]/[PY13][TFSI]([PY13][TFSI]:1-丙基-1-甲基吡咯烷鎓双三氟甲基磺酰亚胺)离子液体电解液与C4Q进行匹配组装锂离子电池,较大程度地提升了其循环稳定性和倍率性能。在0.1C的电流密度下,循环100圈后的放电比容量为280 mAh·g~(-1),1 000圈后的容量保持率高达72%。当电流密度增加至1C时,放电容量仍有154 mAh·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号