首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero‐field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two‐step hydrogenation of dimethyl acetylenedicarboxylate with para‐enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero‐field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.  相似文献   

2.
We have recently demonstrated that sensitive and chemically specific NMR spectra can be recorded in the absence of a magnetic field using hydrogenative parahydrogen induced polarization (PHIP) (1-3) and detection with an optical atomic magnetometer. Here, we show that non-hydrogenative parahydrogen-induced polarization (4-6) (NH-PHIP) can also dramatically enhance the sensitivity of zero-field NMR. We demonstrate the detection of pyridine, at concentrations as low as 6 mM in a sample volume of 250 μL, with sufficient sensitivity to resolve all identifying spectral features, as supported by numerical simulations. Because the NH-PHIP mechanism is nonreactive, operates in situ, and eliminates the need for a prepolarizing magnet, its combination with optical atomic magnetometry will greatly broaden the analytical capabilities of zero-field and low-field NMR.  相似文献   

3.
Nuclear magnetic resonance (NMR) relaxometry and diffusometry are important tools for the characterization of heterogeneous materials and porous media, with applications including medical imaging, food characterization and oil‐well logging. These methods can be extremely effective in applications where high‐resolution NMR is either unnecessary, impractical, or both, as is the case in the emerging field of portable chemical characterization. Here, we present a proof‐of‐concept experiment demonstrating the use of high‐sensitivity optical magnetometers as detectors for ultra‐low‐field NMR relaxation and diffusion measurements.  相似文献   

4.
Low-field benchtop nuclear magnetic resonance (BT-NMR) spectrometers with Halbach magnets are being increasingly used in science and industry as cost-efficient tools for the monitoring of chemical reactions, including hydrogenation. However, their use of low-field magnets limits both resolution and sensitivity. In this paper, we show that it is possible to alleviate these two problems through the combination of parahydrogen-induced polarization (PHIP) and fast correlation spectroscopy with time-resolved non-uniform sampling (TR-NUS). PHIP can enhance NMR signals so that substrates are easily detectable on BT-NMR spectrometers. The interleaved acquisition of one- and two-dimensional spectra with TR-NUS provides unique insight into the consecutive moments of hydrogenation reactions, with a spectral resolution unachievable in a standard approach. We illustrate the potential of the technique with two examples: the hydrogenation of ethylphenyl propiolate and the hydrogenation of a mixture of two substrates – ethylphenyl propiolate and ethyl 2-butynoate.  相似文献   

5.
High-resolution nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for obtaining chemical structure information. Its quantitative and noninvasive properties have led to its growing popularity as an analytical tool in many fields, including biology, chemistry, medicine, and food science. During transportation and storage, chemical reactions among the many nutrients lead to a loss of food quality. In these circumstances, portable NMR spectrometers can readily be used for food inspection and quality control. Because of the heterogeneous tissue distribution in food, a high-resolution NMR method is required for detailed food inspection. Therefore, in this study, we demonstrated the feasibility of using an intermolecular double-quantum coherence signal to obtain high-resolution metabolic profiles of several fruits, including grape, cantaloupe, tomato, and watermelon. The resulting high-resolution NMR spectra facilitate the identification of important metabolites, which can be used as biomarkers for food quality control. The method established here may be adapted for food inspection using portable NMR equipment.  相似文献   

6.
We demonstrate a general nuclear magnetic resonance (NMR) spectroscopic approach in obtaining high-resolution (17)O (spin-5/2) NMR spectra for biological macromolecules in aqueous solution. This approach, termed quadrupole central transition (QCT) NMR, is based on the multiexponential relaxation properties of half-integer quadrupolar nuclei in molecules undergoing slow isotropic tumbling motion. Under such a circumstance, Redfield's relaxation theory predicts that the central transition, m(I) = +1/2 ? -1/2, can exhibit relatively long transverse relaxation time constants, thus giving rise to relatively narrow spectral lines. Using three robust protein-ligand complexes of size ranging from 65 to 240 kDa, we have obtained (17)O QCT NMR spectra with unprecedented resolution, allowing the chemical environment around the targeted oxygen atoms to be directly probed for the first time. The new QCT approach increases the size limit of molecular systems previously attainable by solution (17)O NMR by nearly 3 orders of magnitude (1000-fold). We have also shown that, when both quadrupole and shielding anisotropy interactions are operative, (17)O QCT NMR spectra display an analogous transverse relaxation optimized spectroscopy type behavior in that the condition for optimal resolution depends on the applied magnetic field. We conclude that, with the currently available moderate and ultrahigh magnetic fields (14 T and higher), this (17)O QCT NMR approach is applicable to a wide variety of biological macromolecules. The new (17)O NMR parameters so obtained for biological molecules are complementary to those obtained from (1)H, (13)C, and (15)N NMR studies.  相似文献   

7.
Nuclear magnetic resonance (NMR) studies have benefited tremendously from the steady increase in the strength of magnetic fields. Spectacular improvements in both sensitivity and resolution have enabled the investigation of molecular systems of rising complexity. At very high fields, this progress may be jeopardized by line broadening, which is due to chemical exchange or relaxation by chemical shift anisotropy. In this work, we introduce a two‐field NMR spectrometer designed for both excitation and observation of nuclear spins in two distinct magnetic fields in a single experiment. NMR spectra of several small molecules as well as a protein were obtained, with two dimensions acquired at vastly different magnetic fields. Resonances of exchanging groups that are broadened beyond recognition at high field can be sharpened to narrow peaks in the low‐field dimension. Two‐field NMR spectroscopy enables the measurement of chemical shifts at optimal fields and the study of molecular systems that suffer from internal dynamics, and opens new avenues for NMR spectroscopy at very high magnetic fields.  相似文献   

8.
The magnetic field dependence of spatial frequency encoding NMR techniques is addressed through a detailed analysis of 1H NMR spectra acquired under spatial frequency encoding on an oligomeric saccharide sample. In particular, the influence of the strength of the static magnetic field on spectral and spatial resolutions that are key features of this method is investigated. For this purpose, we report the acquisition of correlation experiments implementing broadband homodecoupling or J‐edited spin evolutions, and we discuss the resolution enhancements that are provided by these techniques at two different magnetic fields. We show that performing these experiments at higher field improves the performance of high resolution NMR techniques based on a spatial frequency encoding. The significant resolution enhancements observed on the correlation spectra acquired at very high field make them valuable analytical tools that are suitable for the assignment of 1H chemical shifts and scalar couplings in molecules with highly crowded spectrum such as carbohydrates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
High-resolution nuclear magnetic resonance (NMR) is one of the most powerful tools for analyzing molecular structures and dynamics. Magnetic field homogeneity is required for conventional high-resolution spectra. However, there are many chemical and/or biological circumstances where the spatial homogeneities of the magnetic fields are degraded. Intense solvent signal is another obstacle for obtaining high-resolution spectra, especially in in vivo and in situ NMR spectroscopy. In this paper, a new pulse sequence based on intermolecular multiple quantum coherence (iMQC) was reported. This sequence can effectively remove the effect of magnetic field inhomogeneity and suppress the solvent signal. It can recover the spectral information such as chemical shifts, coupling constants, multiplet patterns, and relative peak areas in inhomogeneous fields. Theoretical analyses and experimental verifications are presented to demonstrate the feasibility of this method.  相似文献   

10.
Online monitoring by flow NMR spectroscopy is a powerful approach to study chemical reactions and processes, which can provide mechanistic understanding, and drive optimisations. However, some of the most useful methods for mixture analysis and reaction monitoring are not directly applicable in flow conditions. This is the case of classic diffusion-ordered NMR spectroscopy (DOSY) methods, which can be used to separate the spectral information for mixture's components. We describe a fast and flow-compatible diffusion NMR experiment that makes it possible to collect accurate diffusion data for samples flowing at up to 3 mL/min. We use it to monitor the synthesis of a Schiff base with a flow-tube with a time resolution of approximately 2 minutes. The one-shot flow-compatible diffusion NMR described here open many avenues for reaction monitoring applications.  相似文献   

11.
Polymers are generally spatially heterogeneous, either in terms of morphology or as blends of various components. Solid state NMR imaging provides a means of characterizing both the chemical/morphological composition and its spatial variation. Here we discuss multiple-pulse line-narrowing approaches to acquiring high resolution NMR images and how these sequences can be modified so as to be sensitive to the chemical composition of a sample.  相似文献   

12.
Microcoil nuclear magnetic resonance (NMR) has been interfaced with digital microfluidics (DMF) and is applied to monitor organic reactions in organic solvents as a proof of concept. DMF permits droplets to be moved and mixed inside the NMR spectrometer to initiate reactions while using sub‐microliter volumes of reagent, opening up the potential to follow the reactions of scarce or expensive reagents. By setting up the spectrometer shims on a reagent droplet, data acquisition can be started immediately upon droplet mixing and is only limited by the rate at which NMR data can be collected, allowing the monitoring of fast reactions. Here we report a cyclohexene carbonate hydrolysis in dimethylformamide and a Knoevenagel condensation in methanol/water. This is to our knowledge the first time rapid organic reactions in organic solvents have been monitored by high field DMF‐NMR. The study represents a key first step towards larger DMF‐NMR arrays that could in future serve as discovery platforms, where computer controlled DMF automates mixing/titration of chemical libraries and NMR is used to study the structures formed and kinetics in real time.  相似文献   

13.
High‐resolution multidimensional nuclear magnetic resonance (NMR) spectroscopy serves as an irreplaceable and versatile tool in various chemical investigations. In this study, a method based on the concept of partial homogeneity is developed to offer two‐dimensional (2D) high‐resolution NMR spectra under inhomogeneous fields. Oscillating gradients are exerted to encode the high‐resolution information, and a field‐inhomogeneity correction algorithm based on pattern recognition is designed to recover high‐resolution spectra. Under fields where inhomogeneity primarily distributes along a single orientation, the proposed method will improve performances of 2D NMR spectroscopy without increasing the experimental duration or significant loss in sensitivity, and thus may open important perspectives for studies of inhomogeneous chemical systems.  相似文献   

14.
We examined conformation and dynamics of a variety of fibrous and membrane proteins by means of the conformation-dependent displacements of 13C nuclear magnetic resonance (NMR) chemical shifts and their relaxation parameters, respectively, as recorded by high-resolution solid-state 13C NMR. Determination of three-dimensional structure of atomic resolution is also briefly described for a simple peptide on the basis of precise measurements of interatomic distances.  相似文献   

15.
The high resolution X-band electron para magnetic resonance (EPR) spectrum of quintet pyridyl-2,6-dinitrene was recorded after the photolysis of 4-amino-2,6-diazido-3,5-dichloropyridine in solid argon matrix at 15 K. This spectrum represents a new type of powder EPR spectra that are characteristic for quintet spin states with zero-field splitting parameters |E(q)/D(q)| approximately 1/4. All EPR lines of the quintet dinitrene were unambiguously assigned based on the eigenfield calculations of the Zeeman energy levels and angular dependencies of resonance magnetic fields. Owing to the high resolution of the experimental EPR spectrum, zero-field splitting parameters of the quintet dinitrene were determined with a high accuracy: D(q)=0.2100+/-0.0005 cm(-1) and E(q)=-0.0560+/-0.0002 cm(-1). These parameters provide correct information regarding the molecular angle Theta and distance r between two triplet sites in the molecule of quintet dinitrene. The measured molecular angle Theta=114.2 degrees+/-0.2 degrees is in excellent agreement with results of the density functional theory calculations. The analysis of the magnetic parameters shows that the spin population on the nitrene units in the quintet dinitrene is greater than that on the nitrene unit in the triplet nitrene.  相似文献   

16.
Quality assurance and process understanding are assuming increasing importance in the production of Active Pharmaceutical Ingredients (APIs). NMR has the potential to report on physical processes, quantities, structures, and speciation as chemical reactions progress. Following the progression of chemical reactions by placing the sample in an NMR tube, one can perform a large number of useful studies that provide chemical and mechanistic insight. But this simple approach can have limitations, and we have therefore constructed an apparatus comprising a laboratory reactor coupled with an NMR flow cell. The reactor duplicates the exact reaction conditions that will apply with large-scale production. This reaction mixture is sampled and pumped to a high-resolution NMR flow cell where the spectrum is recorded through the course of the reaction. We demonstrate the utility of reaction monitoring using NMR both for simple cases where tubes can be used, and describe the design of the on-flow apparatus and highlight its utility with an example.  相似文献   

17.
We report, by employing time resolved Raman and nuclear magnetic resonance (NMR) spectroscopy, on the gelation process in ionogels. These are prepared from a non-aqueous sol-gel reaction in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C(1)C(6)ImTFSI). Raman and NMR spectroscopies are complementarily used to decipher the chemical reactions that occur during synthesis and to clarify the state of the ionic liquid up to, and well beyond, gelation. We find that the ionic liquid concentration affects both the reaction rate and the gelation time (t(gel)). In addition, NMR and Raman data reveal inherently different roles of the cation and the anion in the gelation process. While the oscillating behavior of the TFSI Raman signature at ~740 cm(-1) is mainly an effect of solvation and chemical composition, the evolution of the relative chemical shifts (Δδ) of different hydrogen atoms on the imidazolium correlates with gelation, as does the width of the chemical shift of -OH containing groups (δ(OH)). We also observe that in the confined state the TFSI anion preferably adopts the cisoid conformation and experiences a stronger ion-ion interaction.  相似文献   

18.
We report the synthesis of mesoporous SBA‐15 type silica bearing ionic imidazolium substructures. Surface functionalization was achieved via post‐synthesis grafting reactions using bis‐silylated imidazolium precursors onto a mesoporous SBA‐15 type silica support. The grafting reactions were monitored via solid‐state NMR spectroscopy, nitrogen sorption, transmission electron microscopy and thermogravimetry. Post‐synthesis grafting is the most convenient way to achieve highly stable functionalized solids displaying excellent accessibility of the immobilized functional groups combined with high chemical stability. The solids obtained via post‐synthesis grafting reactions appeared as highly efficient and reusable heterogeneous organocatalysts for Henry reactions and the cycloadditions of CO2 to epichlorohydrin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105‐fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high‐resolution low‐field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real‐time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low‐field (milli‐Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen‐enhanced NMR and MRI, which are free from the limitations of high‐field magnetic resonance (including susceptibility‐induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields.  相似文献   

20.
In this paper, we introduce algorithms based on Fourier synthesis for designing phase compensating rf pulse sequences for high-resolution nuclear magnetic resonance (NMR) spectroscopy in an inhomogeneous B0 field. We show that using radio frequency pulses and time varying linear gradients in three dimensions, it is possible to impart the transverse magnetization of spins phase, which is a desired function of the spatial (x,y,z) location. Such a sequence can be used to precompensate the phase that will be acquired by spins at different spatial locations due to inhomogeneous magnetic fields. With this precompensation, the chemical shift information of the spins can be reliably extracted and high resolution NMR spectrum can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号