首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sodium‐ion batteries (NIBs) are the most promising alternatives to lithium‐ion batteries in the development of renewable energy sources. The advancement of NIBs depends on the exploration of new electrode materials and fundamental understanding of working mechanisms. Herein, via experimental and simulation methods, we develop a mixed polyanionic compound, Na2Fe(C2O4)SO4?H2O, as a cathode for NIBs. Thanks to its rigid three dimensional framework and the combined inductive effects from oxalate and sulfate, it delivered reversible Na insertion/desertion at average discharging voltages of 3.5 and 3.1 V for 500 cycles with Coulombic efficiencies of ca. 99 %. In situ synchrotron X‐ray measurements and DFT calculations demonstrate the Fe2+/Fe3+ redox reactions contribute to electron compensation during Na+ desertion/insertion. The study suggests mixed polyanionic frameworks may provide promising materials for Na ion storage with the merits of low cost and environmental friendliness.  相似文献   

2.
Herein, we introduce a 4.0 V class high-voltage cathode material with a newly recognized sodium superionic conductor (NASICON)-type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N-doped graphene oxide-wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all-climate performance were carefully investigated. A near-zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X-ray diffraction, and the in situ X-ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high-voltage NASICON-type Na3V(PO3)3N composite is a competitive cathode material for sodium-ion batteries and will receive more attention and studies in the future.  相似文献   

3.
4.
Rechargeable batteries have been used to power various electric devices and store energy from renewables, but their toxic components (namely, electrode materials, electrolyte, and separator) generally cause serious environment issues when disused. Such toxicity characteristic makes them difficult to power future wearable electronic devices. Now an environmentally friendly and highly safe rechargeable battery, based on a pyrene‐4,5,9,10‐tetraone (PTO) cathode and zinc anode in mild aqueous electrolyte is presented. The PTO‐cathode shows a high specific capacity (336 mAh g?1) for Zn2+ storage with fast kinetics and high reversibility. Thus, the PTO//Zn full cell exhibits a high energy density (186.7 Wh kg?1), supercapacitor‐like power behavior and long‐term lifespan (over 1000 cycles). Moreover, a belt‐shaped PTO//Zn battery with robust mechanical durability and remarkable flexibility is first fabricated to clarify its potential application in wearable electronic devices.  相似文献   

5.
6.
The photochemistry of 1,2‐dihydro‐1,2‐azaborinine derivatives was studied under matrix isolation conditions and in solution. Photoisomerization occurs exclusively to the Dewar valence isomers upon irradiation with UV light (>280 nm) with high quantum yield (46 %). Further photolysis with UV light (254 nm) results in the formation of cyclobutadiene and an iminoborane derivative. The thermal electrocyclic ring‐opening reaction of the Dewar valence isomer back to the 1,2‐dihydro‐1‐tert‐butyldimethylsilyl‐2‐mesityl‐1,2‐azaborinine has an activation barrier of (27.0±1.2) kcal mol−1. In the presence of the Wilkinson catalyst, the ring opening occurs rapidly and exothermically (ΔH=(−48±1) kcal mol−1) at room temperature.  相似文献   

7.
Low‐cost electrochemical energy storage systems (EESSs) are urgently needed to promote the application of renewable energy sources such as wind and solar energy. In analogy to lithium‐ion batteries, the cost of EESSs depends mainly on charge‐carrier ions and redox centers in electrodes, and their performance is limited by positive electrodes. In this context, this Minireview evaluates several EESS candidates and summarizes the known mixed polyanionic compounds (MPCs)—a family with robust frameworks and large channels for ion storage and migration. After comprehensive analysis, it is pointed out that a deeper exploration of MPCs may generate numerous novel crystallographically interesting compounds and excellent cathode materials for low‐cost energy storage applications.  相似文献   

8.
The preparation of allylic amines is traditionally accomplished by reactions of amines with reactive electrophiles, such as allylic halides, sulfonates, or oxyphosphonium species; such methods involve hazardous reagents, generate stoichiometric waste streams, and often suffer from side reactions (such as overalkylation). We report here the first broad‐scope nickel‐catalysed direct amination of allyl alcohols: An inexpensive NiII/Zn couple enables the allylation of primary, secondary, and electron‐deficient amines without the need for glove‐box techniques. Under mild conditions, primary and secondary aliphatic amines react smoothly with a range of allyl alcohols, giving secondary and tertiary amines efficiently. This “totally catalytic” method can also be applied to electron‐deficient nitrogen nucleophiles; the practicality of the process was demonstrated in an efficient, gram‐scale preparation of the calcium antagonist drug substance flunarizine (Sibelium®).  相似文献   

9.
Wide‐scale exploitation of renewable energy requires low‐cost efficient energy storage devices. The use of metal‐free, inexpensive redox‐active organic materials represents a promising direction for environmental‐friendly, cost‐effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g−1 and stable capacity retention about 99.7 % per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio‐electrochemical process of quinones in nature, using such a bio‐inspired organic compound in batteries enables access to greener and more sustainable energy‐storage technology.  相似文献   

10.
11.
Direct palladium‐catalysed cross‐couplings between organolithium reagents and (hetero)aryl halides (Br, Cl) proceed fast, cleanly and selectively at room temperature in air, with water as the only reaction medium and in the presence of NaCl as a cheap additive. Under optimised reaction conditions, a water‐accelerated catalysis is responsible for furnishing C(sp3)–C(sp2), C(sp2)–C(sp2), and C(sp)–C(sp2) cross‐coupled products, in competition with protonolysis, within a reaction time of 20 s, in yields of up to 99 %, and in the absence of undesired dehalogenated/homocoupling side products even when challenging secondary organolithiums serve as the starting material. It is worth noting that the proposed protocol is scalable and the catalyst and water can easily and successfully be recycled up to 10 times, with an E‐factor as low as 7.35.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Low‐cost layered oxides free of Ni and Co are considered to be the most promising cathode materials for future sodium‐ion batteries. Biphasic Na0.78Cu0.27Zn0.06Mn0.67O2 obtained via superficial atomic‐scale P3 intergrowth with P2 phase induced by Zn doping, consisting of inexpensive transition metals, is a promising cathode for sodium‐ion batteries. The P3 phase as a covering layer in this composite shows not only in excellent electrochemical performance but also its tolerance to moisture. The results indicate that partial Zn substitutes can effectively control biphase formation for improving the structural/electrochemical stability as well as the ionic diffusion coefficient. Based on in situ synchrotron X‐ray diffraction coupled with electron‐energy‐loss spectroscopy, a possible Cu2+/3+ redox reaction mechanism has now been revealed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号