首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, copper/zinc oxide/graphite nitrogen carbide (Cu/ZnO/g-C3N4) is prepared using a hydrothermal method and applied as a photocatalyst for CO2 photoreduction. The morphology and structural properties of the obtained Cu/ZnO/g-C3N4 are systematically characterized through X-ray powder diffraction, ultraviolet–visible absorption spectroscopy, transmission electronic microscopy, and photoluminescence spectroscopy. A 3 wt% Cu/ZnO/g-C3N4 photocatalyst exhibits high CH4 (40.7 μmol g−1 hr−1), CO (65.1 μmol g−1 hr−1), and CH3OH (92.5 μmol g−1 hr−1) production rates, which are 38.3, 77.1, and 58.1 fold higher than the pure g-C3N4. The production rate is higher than those for bulk g-C3N4 and ZnO/g-C3N4. Finally, the reaction mechanism of Cu/ZnO/C3N4 is proposed in this study.  相似文献   

2.
PtPd bimetallic alloy nanoparticle (NP)-modified graphitic carbon nitride (g-C3N4) nanosheet photocatalysts were synthesized via chemical deposition precipitation. Characterization of the photocatalytic H2 evolution of the g-C3N4 nanosheets shows that it was significantly enhanced when PtPd alloy NPs were introduced as a co-catalyst. The 0.2 wt% PtPd/g-C3N4 composite photocatalyst gave a maximum H2 production rate of 1600.8 μmol g–1 h–1. Furthermore, when K2HPO4 was added to the reaction system, the H2 production rate increased to 2885.0 μmol g–1 h–1. The PtPd/g-C3N4 photocatalyst showed satisfactory photocatalytic stability and was able to maintain most of its photocatalytic activity after four experimental photocatalytic cycles. In addition, a possible mechanism for the enhanced photocatalytic activity was proposed and verified by various photoelectric techniques. These results demonstrate that the synergistic effect between PtPd and g-C3N4 helps to greatly improve the photocatalytic activity of the composite photocatalyst.  相似文献   

3.
Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years. In this study, noble-metal-free Ni3N was used as an active cocatalyst to enhance the activity of g-C3N4 for photocatalytic H2 production under visible-light irradiation (λ > 420 nm). The characterization results indicated that Ni3N nanoparticles were successfully loaded onto the g-C3N4, which accelerated the separation and transfer of photogenerated electrons and resulted in enhanced photocatalytic H2 evolution under visible-light irradiation. The hydrogen evolution rate reached ~305.4 μmol h?1 g?1, which is about three times higher than that of pristine g-C3N4, and the apparent quantum yield (AQY) was ~0.45% at λ = 420. Furthermore, the Ni3N/g-C3N4 photocatalyst showed no obvious decrease in the hydrogen production rate, even after five cycles under visible-light irradiation. Finally, a possible photocatalytic hydrogen evolution mechanism for the Ni3N/g-C3N4 system is proposed.  相似文献   

4.
As one of the most efficient systems for photocatalytic hydrogen evolution, the Z-Scheme system, consisting of different semiconductors with a reversible donor–acceptor pair, has attracted great attention. Considering the non-toxicity and low cost of photocatalysts, a series of g-C3N4/α-Fe2O3 hybrids were rationally constructed based on the Z-Scheme mechanism for the first time, using a metal-organic framework template approach that can fine tune the compositions and properties of the hybrids. An optimized hybrid, g-C3N4/α-Fe2O3-2, exhibited prominent photocatalytic water splitting performance with a visible light response. Under irradiation of visible light (λ>420 nm), the hybrid shows a high durability and superior hydrogen production rate of 2066.2 μmol g−1 h−1 from water splitting, which is approximately three times greater than that of bulk g-C3N4 because of the effective separation of photo-excited charge carriers by two narrow band gap semiconductors, tightly coupled with the Z-Scheme structural feature.  相似文献   

5.
The polarity of a semiconducting molecule affects its intrinsic photophysical properties, which can be tuned by varying the molecular geometry. Herein, we developed a D3h-symmetric tricyanomesitylene as a new monomer which could be reticulated into a vinylene-linked covalent organic framework (g-C54N6-COF) via Knoevenagel condensation with another D3h-symmetric monomer 2,4,6-tris(4′-formyl-biphenyl-4-yl)-1,3,5-triazine. Replacing tricyanomesitylene with a C2v-symmetric 3,5-dicyano-2,4,6-trimethylpyridine gave a less-symmetric vinylene-linked COF (g-C52N6-COF). The octupolar conjugated characters of g-C54N6-COF were reflected in its scarce solvatochromic effects either in ground or excited states, and endowed it with more promising semiconducting behavior as compared with g-C52N6-COF, such as enhanced light-harvesting and excellent photo-induced charge generation and separation. Along with the matched energy level, g-C54N6-COF enabled the two-half reactions of photocatalytic water splitting with an average O2 evolution rate of 51.0 μmol h−1 g−1 and H2 evolution rate of 2518.9 μmol h−1 g−1. Such values are among the highest of state-of-the-art COF photocatalysts.  相似文献   

6.
As one of the 2D transition metal sulfides,1T phase MoS2 nanosheets (NSs) have been studied because of their distinguished conductivity and suitable electronic structure.Nevertheless,the active sites are limited to a small number of edge sites only,while the basal plane is catalytically inert.Herein,we report that boron (B) doped 1T phase Mo S2NSs can replace precious metals as a co-catalyst to assist in photocatalytic H2production of 2D layered g-C3N<...  相似文献   

7.
Ag nanoparticles (NPs) were deposited on the surface of g-C3N4 (CN) by an in situ calcination method. NiS was successfully loaded onto the composites by a hydrothermal method. The results showed that the 10 wt%-NiS/1.0 wt%-Ag/CN composite exhibits excellent photocatalytic H2 generation performance under solar-light irradiation. An H2 production rate of 9.728 mmol·g?1·h?1 was achieved, which is 10.82-, 3.45-, and 2.77-times higher than those of pure g-C3N4, 10 wt%-NiS/CN, and 1.0 wt%-Ag/CN composites, respectively. This enhanced photocatalytic H2 generation can be ascribed to the co-decoration of Ag and NiS on the surface of g-C3N4, which efficiently improves light harvesting capacity, photogenerated charge carrier separation, and photocatalytic H2 production kinetics. Thus, this study demonstrates an effective strategy for constructing excellent g-C3N4-related composite photocatalysts for H2 production by using different co-catalysts.  相似文献   

8.
Graphite carbon nitride(g-C3N4) is a promising non-metal photocatalyst for photocatalytic hydrogen production, but its performance is still limited due to sluggish charges separation and low utilization of light.In this work, P-doped and N-doped carbon dots(NCDs) supported g-C3N4were successfully prepared via hydrothermal and polymerization reactions. The sub-bandgap formed by P-doping enhances the utilization of visible light, and the high electron de...  相似文献   

9.
Piezocatalytic hydrogen peroxide (H2O2) production is a green synthesis method, but the rapid complexation of charge carriers in piezocatalysts and the difficulty of adsorbing substrates limit its performance. Here, metal-organic cage-coated gold nanoparticles are anchored on graphitic carbon nitride (MOC-AuNP/g-C3N4) via hydrogen bond to serve as the multifunctional sites for efficient H2O2 production. Experiments and theoretical calculations prove that MOC-AuNP/g-C3N4 simultaneously optimize three key parts of piezocatalytic H2O2 production: i) the MOC component enhances substrate (O2) and product (H2O2) adsorption via host–guest interaction and hinders the rapid decomposition of H2O2 on MOC-AuNP/g-C3N4, ii) the AuNP component affords a strong interfacial electric field that significantly promotes the migration of electrons from g-C3N4 for O2 reduction reaction (ORR), iii) holes are used for H2O oxidation reaction (WOR) to produce O2 and H+ to further promote ORR. Thus, MOC-AuNP/g-C3N4 can be used as an efficient piezocatalyst to generate H2O2 at rates up to 120.21 μmol g−1 h−1 in air and pure water without using sacrificial agents. This work proposes a new strategy for efficient piezocatalytic H2O2 synthesis by constructing multiple active sites in semiconductor catalysts via hydrogen bonding, by enhancing substrate adsorption, rapid separation of electron-hole pairs and preventing rapid decomposition of H2O2.  相似文献   

10.
Direct Z-scheme g-C3N4/TiO2 nanorod composites were prepared for enhancing photocatalytic activity for pollutant removal. The characterization revealed that the g-C3N4/TiO2 nanorod composite formed a close interface contact between g-C3N4 and TiO2 nanorods, which was of benefit for the charge transfer and resulted in its high photocatalytic activity. The g-C3N4/TiO2 nanorod composites exhibited higher photocatalytic activity for degradation of Rhodamine B (RHB) than bare g-C3N4 and TiO2 nanorods. The high photocatalytic activity of g-C3N4/TiO2 nanorod composites is attributed to the formation of the direct Z-scheme system, in which the electrons from the conduction band (CB) of TiO2 combine with the holes from the valence band (VB) of C3N4 while the electrons from the CB of C3N4 and holes from the VB of TiO2 with stronger redox ability are used to reduce and oxidize pollutants. Based on the radical-trapping experiments, the main reactive species for RHB degradation are O2 and · OH, which are produced by photoinduced electrons and holes with high redox ability. This work provides insights into the photocatalytic mechanism of composite materials for the photocatalytic removal of organic pollutants.  相似文献   

11.
Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV–vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10−4 min−1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.  相似文献   

12.
Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.  相似文献   

13.
通过焙烧-超声混合法成功地制备了BiOBr/g-C3N4 S型异质结复合光催化剂。采用多种表征手段对样品物理属性进行了表征,包括X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-VisDRS)。研究了所制备样品有/无Fe3+的光-自芬顿催化/光催化降解罗丹明B (RhB)性能。通过捕获实验确定了光催化反应中的主要活性物种,提出了光-自芬顿反应的降解机理。研究结果表明,BiOBr/g-C3N4 S型异质结能原位生成H2O2,添加Fe3+后,H2O2被原位活化成活性物种且光生电流和载流子分离效率获得显著提高。该光-自芬顿过程能高效降解RhB,其反应速率常数为0.208 min-1,约为无Fe3+光催化反应速率常数的5.3倍,在光-自芬顿循环使用过程中表现出良好的稳定性。Fe3+的加入促进了光生电荷的分离和H2O2的活化,超氧阴离子自由基(·O2-)、空穴和羟基是光-自芬顿催化过程中的主要活性物种,且·O2-作用更大。  相似文献   

14.
通过焙烧-超声混合法成功地制备了BiOBr/g-C3N4S型异质结复合光催化剂。采用多种表征手段对样品物理属性进行了表征,包括X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)。研究了所制备样品有/无Fe3+的光-自芬顿催化/光催化降解罗丹明B(RhB)性能。通过捕获实验确定了光催化反应中的主要活性物种,提出了光-自芬顿反应的降解机理。研究结果表明,BiOBr/g-C3N4S型异质结能原位生成H2O2,添加Fe3+后,H2O2被原位活化成活性物种且光生电流和载流子分离效率获得显著提高。该光-自芬顿过程能高效降解RhB,其反应速率常数为0.208 min-1,约为无Fe3+光催化反应速率常数的5.3倍,在光-自芬顿循环使用过程中表现出良好的稳定性。Fe...  相似文献   

15.
Fundamental photocatalytic limitations of solar CO2 reduction remain due to low efficiency, serious charge recombination, and short lifetime of catalysts. Herein, two-dimensional graphitic carbon nitride nanosheets with nitrogen vacancies (g-C3Nx) located at both three-coordinate N atoms and uncondensed terminal NHx species were prepared by one-step tartaric acid-assistant thermal polymerization of dicyandiamide. Transient absorption spectra revealed that the defects in g-C3N4 act as trapped states of charges to result in prolonged lifetimes of photoexcited charge carriers. Time-resolved photoluminescence spectroscopy revealed that the faster decay of charges is due to the decreased interlayer stacking distance in g-C3Nx in favor of hopping transition and mobility of charge carriers to the surface of the material. Owing to the synergic virtues of strong visible-light absorption, large surface area, and efficient charge separation, the g-C3Nx nanosheets with negligible loss after 15 h of photocatalysis exhibited a CO evolution rate of 56.9 μmol g−1 h−1 under visible-light irradiation, which is roughly eight times higher than that of pristine g-C3N4. This work presents the role of defects in modulating light absorption and charge separation, which opens an avenue to robust solar-energy conversion performance.  相似文献   

16.
Graphite-like C3N4 (g-C3N4) is ané cient visible-light-driven photocatalyst which is com-monly used in pollutant degradation. The photoreactivity of g-C3N4 depends on the prepa-ration conditions to a large extent. In this work, we linked the preparation conditions of g-C3N4 to its stability and photocatalytic activity through dye photodegradation experi-ments and sensitivity mathematical analyses. The sensitivity mathematical analyses show that the effect of calcination temperature is more significant than calcination time on the photoreactivity of g-C3N4. The photocatalytic activity of optimized g-C3N4 in rhodamine B (RhB) degradation under visible light was 100 times higher than that of non-optimized one. The enhanced performance can be attributed to the increased specific surface area of g-C3N4 and the increased migration velocity of photogenerated electron-hole pairs on the surface. This work deepens the understanding of the relation between preparation conditions and the charateristics of g-C3N4, and provides an extremely simple method for significantly improving the photoreactivity of g-C3N4.  相似文献   

17.
The piezo-Fenton system has attracted attention not only because it can enhance the Fenton reaction activity by mechanical energy input, but also because it is expected to realize a class of stimuli-responsive advanced oxidation systems by regulating energy input and hydrogen peroxide self-supply, thus greatly enriching the application possibilities of Fenton chemistry. In this work, a series of Fe-doped g-C3N4 (g-C3N4-Fe) as a piezo-Fenton system were synthesized where the iron stably immobilized through Fe−N interaction. The piezo-induced electrons generate on g-C3N4 matrix support the conversion of Fe(III) to Fe(II) and promote rate-limiting step of Fenton reaction. With the optimal Fe loading, g-C3N4-0.5Fe can achieve methylene blue (MB) degradation under ultrasonic treatment with first-order kinetic rate constants of 75×10−3 min−1. Most importantly, the g-C3N4-Fe can maintain good catalytic activity in a wide pH range (pH=2.0∼9.0) and be cyclic used without iron leaching to solution (<0.001 μg ⋅ L−1), overcoming the disadvantage of traditional Fe-based Fenton catalysts that can only be applied under acidic conditions and prone to secondary pollution. In addition, g-C3N4-0.5Fe also exhibits antibacterial properties of Escherichia coli and Staphylococcus aureus under ultrasound. Hydroxyl radicals mainly contribute to the degradation of MB and the sterilization process. Our work is an attempt to clarify the role of g-C3N4-Fe in the conversion of mechanical energy to ROS and provide inspirations for the piezo-Fenton system design.  相似文献   

18.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF-HUST-A1 with a benzylamine-functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF-HUST-A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g−1 h−1). Photocatalytic overall water splitting is achieved by depositing dual co-catalysts in CTF-HUST-A1, with H2 evolution and O2 evolution rates of 25.4 μmol g−1 h−1 and 12.9 μmol g−1 h−1 in pure water without using sacrificial agent.  相似文献   

19.
A novel CaCO3/graphitic carbon nitride (g-C3N4) photocatalyst was synthesized for the first time via a facile calcination method using CaCO3 and melamine as precursors. The as-prepared samples were characterized using various techniques, such as scanning and transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, as well as Fourier-transform infrared, X-ray photoelectron, photoluminescence, and UV–vis diffuse reflectance spectroscopy. The results of the experiments confirm the successful coupling of CaCO3 to g-C3N4. The photocatalytic activity of the synthesized CaCO3/g-C3N4 composites was evaluated by assessing their performance in the photocatalytic degradation of crystal violet (CV) in water under visible light irradiation. The analysis shows that CaCO3/g-C3N4 exhibits higher photocatalytic activity towards CV degradation (76.0%) than pristine g-C3N4 (21.6%) and CaCO3 (23.2%). Radical trapping and electron spin resonance experiments show that hydroxyl radicals (OH) and holes (h+) are the key reactive species in the photocatalytic process. The enhanced photocatalytic activity of the composite is mainly attributed to the efficient separation rate of electron-hole pairs achieved through the incorporation of CaCO3.  相似文献   

20.
Flower-like shaped Bi12TiO20 (Bismuth Titanate)/g-C3N4 (graphite-like carbon nitride) heterojunction was prepared through hydrothermal and sonification methods for the degradation of organic pollutants by visible-light irradiation. The preparation process, chemical structures, and the mechanism of photocatalytic enhancement of the heterostructures were studied systematically. Under visible-light irradiation, the novel flower-like shaped Bi12TiO20/g-C3N4 heterojunction demonstrates prominent activities for the degradation of rhodamine B and p-nitrophenol, with the introduction of flower-like shaped Bi12TiO20 into g-C3N4 composites greatly increasing the activity of pure g-C3N4. This activity enhancement for the heterojunction could be mainly attributed to its low recombination speed of electron–hole pairs, high adsorption ability of organic pollutants, and better optical absorption ability. Moreover, in the visible-light system of Bi12TiO20/g-C3N4, OH also contributed to the degradation of pollutants, which may explain the enhanced photocatalytic activity after the introduction of Bi12TiO20, as OH is inactive in pure g-C3N4. Furthermore, 10 wt.% Bi12TiO20/g-C3N4 showed not only high activity but also good stability for degradation of aqueous organic pollutants, implying potential applications prospect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号