首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new thiacalix[4]arene derivative in a 1,3-alternate conformation bearing four naphthalene groups through crown-3 chains has been synthesized, which exhibits high selectivity toward Hg2+ by forming a 1:2 complex, among other metal ions ( Na+, K+, Mg2+, Ba2+, Ca2+, Sr2+, Cs+, Mn2+, Fe2+, Cd2+, Co2+, Ni2+, Cu2+, Li+, and Zn2+) with a low detection limit (3.30×10?7 M). The metal ion-binding properties were studied by fluorescence, AFM, and 1H NMR spectroscopy. The in situ prepared [Hg2++L] complex shows well recognition ability for cysteine with a low detection limit (2.23×10?7 M) through fluorescence turning on. The mechanism of fluorescence turning on is the host L releasing from [L+Hg2+] for [Cys+Hg2+] complex formed. Thus the paper reports secondary-sensor design: Hg2+ as a first sensor for [L+Hg2+] form, cysteine as a second sensor for Hg2+ releasing from the [L+Hg2+] complex after cysteine adding in.  相似文献   

2.
An optical chemical sensor based on 2-mercaptopyrimidine (2-MP) in plasticized poly(vinyl chloride) (PVC) membrane incorporating (N,N-diethyl-5-(octadecanoylimino)-5H benzo[a]phenoxazine-9-amine (ETH 5294) and sodium tetraphenyl borate (NaTPB) for batch and flow-through determination of mercury ion is described. The response of the sensor is based on selective complexation of Hg2+ with 2-MP in the membrane phase, resulting in an ion exchange process between H+ in the membrane and Hg2+ in the sample solution. The influences of several experimental parameters, such as membrane composition, pH, and type and concentration of the regenerating reagent, were investigated. The sensor has a response range of 2.0 × 10−9 to 2.0 × 10−5 mol L−1 Hg2+ with a detection limit of 4.0 × 10−10 mol L−1 and a response time of ≤45 s at optimum pH of 6.5 with high measurement repeatability and sensor-to-sensor reproducibility. It shows high selectivity for Hg2+ over several transition metal ions, including Ag+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, and common alkali and alkaline earth ions such as Na+, K+, Mg2+, Ca2+, and Pb2+. The sensor membrane can be easily regenerated with dilute acid solutions. The sensor has been used for the determination of mercury ion concentration in water samples.  相似文献   

3.
A new fluorescent probe L based on the rhodamine 6G platforms for Fe3+ has been designed and synthesised. L showed excellent selectivity and high sensitivity for Fe3+ against other metal ions such as K+, Na+, Ag+, Cu2+, Co2+, Mg2+, Cd2+, Ni2+, Zn2+, Fe2+, Hg2+, Ce3+ and Y3+ in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The distinct color change and the rapid emergence of fluorescence emission provided naked-eyes detection for Fe3+. The recognition mechanism of the probe toward Fe3+ was evaluated by Job’s plots, IR and ESI-MS. In order to further study their fluorescent properties, L + Fe3+ fluorescence lifetime was also measured. Moreover, the test strip results showed that these probes could act as a convenient and efficient Fe3+ test kit.  相似文献   

4.
A solid state copper(II) ion sensor is reported based on the application of electropolymerized undoped (neutral) polycarbazole (PCz) and polyindole (PIn) modified electrodes. The new sensor shows high selectivity to Cu2+ ions with a detection limit of 10–5 M. PCz and PIn are formed respectively by the anodic oxidation of 50 mM carbazole and 5 mM indole monomers in dichloromethane containing 0.1 M tetrabutylammonium perchlorate on a platinum electrode using a single compartment cell. Potentiostatic polymerization of both the monomers are carried out at 1.3 V and 1.0 V vs. Ag/AgCl, respectively. Perchlorate ions were electrochemically removed from the polymer films by applying – 0.2 V vs. Ag/AgCl. Polymer-coated electrodes are incubated in 1 M KCl solution for 8 h followed by incubation in distilled water for 2 h before using as a metal ion sensor. The undoped PCz and PIn electrodes were found to be highly selective and sensitive for Cu2+ ions with little selectivity for Pb2+ and negligible response towards Ag+, Hg2+, Cu+, Ni2+, Co2+, Fe2+, Fe3+ or Zn2+. Potentiometric responses for Cu2+ ions are recorded for both the sensor electrodes together with a double-junction Ag/AgCl reference electrode. Calibration curves for Cu2+ are reported for both ion sensors. The polymer-modified electrodes were found to be stable for several weeks. Electronic Publication  相似文献   

5.
We develop a highly effective silole‐infiltrated photonic crystal (PC) film fluorescence sensor with high sensitivity, good selectivity and excellent reproducibility for Fe3+ and Hg2+ ions. Hexaphenylsilole (HPS) infiltrated PCs show amplified fluorescence due to the slow photon effect of PC because the emission wavelength of HPS is at the blue band edge of the selected PC’s stopband. The fluorescence can be quenched significantly by Fe3+/Hg2+ ions owing to electron transfer between HPS and metal ions. The amplified fluorescence enhances the sensitivity of detection, with a detection limit of 5 nM for Fe3+/Hg2+ ions. The sensor is negligibly responsive to other metal ions and can easily be reproduced by rinsing with pure water due to the special surface wettability of PC. As a result, a highly effective Fe3+/Hg2+ ions sensor based on HPS‐infiltrated PC film has been achieved, which will be important for effective and practical detection of heavy metal ions.  相似文献   

6.
A hydrophobic organic monomer GRBE with a polymerizable methacrylester moiety had been synthesized by reaction of rhodamine B‐ethanediamine with glycidyl methacrylate. A water‐soluble polymeric chemosensor poly(VP‐GRBE) had been prepared via copolymerization with a hydrophilic comonomer (vinylpyrrolidone) and GRBE, which was able to sense environmentally poisonous cations in completely aqueous media. The chemosensor was a derivative of rhodamine B, which behaved as a fluorescent and chromogenic sensor toward various heavy cations, particularly Cr3+, Fe3+, and Hg2+. Titration curves of Cr3+, Fe3+, and Hg2+ were constructed using rapid, cheap, and widely available technique of fluorescence spectroscopies. The detection limits for Cr3+, Fe3+, or Hg2+ ions were found to be 2.20 × 10?12, 2.39 × 10?12, and 1.11 × 10?12 mol/l in the same medium, respectively. Moreover, a colorimetric response from the polymeric chemosensor permitted the detection of Cr3+, Hg2+, or Fe3+ by “naked eye” because of the development of a pink or brown yellow color when Cr3+, Hg2+, or Fe3+ cations interacted with the copolymer in aqueous media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel fluorometric sensor bearing three dansyl moieties based on tris[2-(2-aminoethylthio)ethyl]amine was prepared by a simple approach using a conventional two-step synthesis. The sensor exhibits highly Hg2+-selective ON-OFF fluorescence quenching behavior in aqueous acetonitrile solutions and is shown to discriminate various competing metal ions, particularly Cu2+, Ag+, and Pb2+ as well as Ca2+, Cd2+, Co2+, Fe3+, Mn2+, Na+, Ni2+, and Zn2+, with a detection limit of 1.15 × 10−7 M or 23 ppb.  相似文献   

8.
In this article, a sensitive and selective turn-off fluorescence chemosensor, Tyloxapol (one kind of water soluble oligomer), was developed for the label-free detection of Fe3+ ions in aqueous solution. Fluorescence (FL) experiments demonstrated that Tyloxapol was a sensitive and selective fluorescence sensor for the detection of Fe3+ directly in water over a wide range of metal cations including Na+, K+, Ag+, Hg2+, Cd2+, Co2+, Cu2+, Cr3+, Mn2+, Ba2+, Zn2+, Ni2+, Mg2+, Ca2+, and Pb2+. Moreover, the fluorescence intensity of Tyloxapol has shown a linear response to Fe3+ in the concentration range of 0–100 μmol L−1 with a detection limit of 2.2 μmol L−1 in aqueous solution. Next, based on a competition mechanism, another turn-on sensing application of the Tyloxapol/Fe3+ platform to probe dopamine (DA) against various other biological molecules such as other neurotransmitters or amino acids (norepinephrine bitartrate, acetylcholine chloride, alanine, valine, phenylalanine, tyrosine, leucine, glycine, histidine) were also investigated. It is expected that our strategy may offer a new approach for developing simple, cost-effective, rapid and sensitive sensors in biological and environmental applications.  相似文献   

9.
In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag+ and Hg2+ by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag+ and Hg2+ over other metal ions, and relevant detection limit of Ag+ and Hg2+ is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag+ can be conveniently reusable for the detection of Hg2+ based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg2+–Ag+ interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag+ and Hg2+ detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring.  相似文献   

10.
A simple Hg2+-selective chemodosimetric system based on thiosemicarbazone was investigated. The transformation of thiosemicarbazone into semicarbazone selectively exerted by Hg2+ ions and the dimerization of semicarbazone resulted in a pronounced OFF–ON-type fluorescent signaling behavior. The coexistent metal ions, such as Fe3+, Ca2+, Cu2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+, Mg2+, Na+, K+, and Fe2+, had no obvious interference with the detection of Hg2+. In addition, S12–Hg2+ plays a high sensitivity for basic anions to form an ‘OFF–ON–OFF’ type signaling behavior, with the Hg2+-induced emission spectra can be quenched. Moreover, test strips based on S12 exhibited a good selectivity to Hg2+. We believe the test strips could act as a convenient and efficient Hg2+ test kit.  相似文献   

11.
Nanostructured polypyrrole (PPy) film doped with Tiron was electrodeposited from aqueous solution on the surface of transparent electrode and used for sensitive, selective and rapid electrically controlled fluorescence detection of Fe3+ in aqueous media. The fluorescence intensity of PPy-Tiron film decreases linearly in the presence of Fe3+ by applying negative potential over a concentration range from 5.0 × 10−8 to 1.0 × 10−6 mol L−1, with a relatively fast response time of less than 30 s at pH 7.4. The detection is not affected by the coexistence of other competitive metal ions such as Al3+, Ce3+, Tl3+, La3+, Bi3+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+, Na+, K+, Mg2+, Ca2+, Sr2+ and Ba2+. The proposed electro-fluorescence sensor has a potential application to the determination of Fe3+ in environmental and biological systems. The fluorescent thin film sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

12.
In this study, a multiplex fluorescence sensor for successive detection of Fe3+, Cu2+ and Hg2+ ions based on “on–off” of fluorescence of a single type of gold nanoclusters (Au NCs) is described. Any of the Fe3+, Cu2+ and Hg2+ ions can cause quenching fluorescence of Au NCs, which established a sensitive sensor for detection of these ions respectively. With the introduction of ethylene diamine tetraacetic acid (EDTA) to the system of Au NCs and metal ions, a restoration of fluorescence may be found with the exception of Hg2+. A highly selective detection of Hg2+ ion is, thus, achieved by masking Fe3+ and Cu2+. On the other hand, the masking of Fe3+ and Cu2+ leads to the enhancement of fluorescence of Au NCs, which in turn provides an approach for successive determination of Fe3+ and Cu2+ based on “on–off” of fluorescence of Au NCs. Moreover, this assay was applied to the successful detection of Fe3+, Cu2+ and Hg2+ in fish, a good linear relationship was found between these metal ions and the degree of quenched fluorescent intensity. The dynamic ranges of Hg2+, Fe3+ and Cu2+ were 1.96 × 10−10–1.01 × 10−9, 1.28 × 10−7–1.27 × 10−6 and 1.2 × 10−7–1.2 × 10−6 M with high sensitivity (the limit of detection of Fe3+ 2.0 × 10−8 M, Cu2+ 1.9 × 10−8 M and Hg2+ 2 × 10−10 M). These results indicate that the assay is suitable for sensitive detection of these metal ions even under the coexistence, which can not only determine all three kinds of metal ions successively but also of detecting any or several kinds of metal ions.  相似文献   

13.
A rapid one-step preparation approach of silver nanoparticles (AgNPs) was reported by employing formamidinesulfinic acid as reducing agent and soluble starch as stabilizing agent. The formation of AgNPs was further confirmed by using UV–Vis absorption spectroscopy, X-ray diffraction spectroscopy and transmission electron microscopy techniques. The resultant AgNPs could be directly used for the colorimetric reaction with metal ions. The results showed that Al3+, Cr3+, Fe3+ and Hg2+ ions could induce the color change of AgNPs from yellow to pink (Al3+), orange (Cr3+) and colorless (Fe3+ and Hg2+), respectively, which can be observed by the naked eye. Based on these, a sensitive colorimetric sensor for Al3+, Fe3+, Cr3+ and Hg2+ ions detection was developed.  相似文献   

14.
A simple and nontoxic fluorescent chemosensor of di‐O‐methyl curcumin has been prepared from curcumin. The sensor exhibited selective and sensitive fluorescent responses toward Al3+ over a wide range of metal ions, such as Mn2+, Ce3+, Pt2+, Sn4+, Hg+, Sb3+, K+, Ca2+, Mg2+, Ba2+, Cu2+, Ni2+, Na+, NH4+, Ag+, Pb2+, Zn2+, Fe2+, Fe3+, Hg2+ and Cr3+ in ethanol/water. The free ligand showed quite weak fluorescence emission due to the isomerization of C?O double bond in the excited state, however, after addition of Al3+, fluorescence emission results in a prominent fluorescence enhancement.  相似文献   

15.
We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg2+) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg2+ aptamer is rich in thymine (T) and readily forms T–Hg2+–T configuration in the presence of Hg2+. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg2+-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg2+ concentration through a five-decade range of 1 × 10−4 mol L−1 to 1 × 10−9 mol L−1. Even with the naked eye, we could identify micromolar Hg2+ concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg2+ over other metal cations including K+, Ba2+, Ni2+, Pb2+, Cu2+, Cd2+, Mg2+, Ca2+, Zn2+, Al3+, and Fe3+. The major advantages of this Hg2+ assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg2+ detection.  相似文献   

16.
An organic–inorganic hybrid optical sensor (PQ-SBA-15) was designed and prepared through functionalisation of the SBA-15 surface with 3-piperazinepropyltriethoxysilane followed by covalently attaching 8-hydroxyquinoline. Characterisation techniques, including FT-IR, thermal gravimetric, N2 adsorption-desorption and X-ray powder diffraction analyses, showed that the organic moieties were successfully grafted onto the surface of SBA-15 without the SBA-15 structure collapsing. The evaluation of the sensing ability of PQ-SBA-15 using fluorescence spectroscopy revealed that the PQ-SBA-15 was a selective fluorescence enhancement-based optical sensor for Al3+ in water in the presence of a wide range of metal cations including Na+, Mg2+, K+, Ca2+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ with a limit of detection of 8.8 × 10–7 M. In addition, good linearity was observed between the fluorescence intensity and the concentration of Al3+.  相似文献   

17.
Environmental pollution in manufacturing sectors is often accompanied by the release of diverse forms of pollutants including heavy metals. Mercury is one of the most toxic heavy metals. Here, we describe a homogeneous chemiluminescent method for Hg2+ detection based on allosteric activation of peroxidase-mimicking DNAzyme and formation of Hg2+-thymine bonds in DNA duplex with T–T mismatches in the presence of mercury. The formation of such duplex increased the activity of peroxidase-mimicking DNAzyme. The analysis conditions and structures of probes were optimized. Under the favorable conditions, the limit of detection and a linear range of the assay were 12 and 12–600?nM, respectively. The values of coefficient of variation measured within the working range varied from 0.7 to 3.0%. The study of cross-reactivity of Hg2+, Ag+, Pb2+, Ca2+, Zn2+, Bi3+, Ni2+, Co2+, Ba2+, Mn2+, Cd2+, Mg2+, and Cr3+ showed that only mercury in concentration nanoscale activates peroxidase-mimicking DNAzyme that indicates high specificity of the developed Hg2+ assay. Thus, an easy-to-use, specific, rapid, and sensitive method for Hg2+ detection was developed.  相似文献   

18.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

19.
A novel copper selective sensor 2 based on hydrazide and salicylaldehyde has been designed and prepared. Sensor 2 behaves a single selectivity and sensitivity in the recognition for Cu2+ over other metal ions such as Fe3+, Hg2+, Ag+, Ca2+, Zn2+, Pb2+, Cd2+, Ni2+, Co2+, Cr3+ and Mg2+ in DMSO. The distinct color change and the rapid changement of fluorescence emission provide naked‐eyes detection for Cu2+. The UV‐vis data indicate that 1:2 stoichiometry complex is formed by sensor 2 and Cu2+. The association constant Ks was 3.51×104 mol?1·L. The detection limitation of Cu2+ with the sensor 2 was 2.2×10?7 mol·L?1. The sensing of Cu2+ by this sensor was found to be reversible, with the Cu2+‐induced color being lost upon addition of EDTA.  相似文献   

20.
Five aromatic azo dyes with hydroxyl groups (1–5) were designed and synthesized by coupling reactions. The relationships between structures of the compounds and the spectroscopic properties were investigated. The absorption spectra of these compounds upon titration with K+, Ca2+, Al3+, Mg2+, Ni2+, Mn2+, Cd2+, Cr3+, Fe3+, Cu2+, Zn2+, Co2+, Hg2+, and Pb2+ ions in neutral aqueous solutions were reported. The results are coincident with the calculation results using the density functional theory method. The high selectivity, excellent water solubility and simple synthetic process make 1-[(2-Hydroxyl)phenylazo]-2-naphthol (5) a potential sensor for sensing Fe3+ and Mn2+ with the naked eye. 1-[(2-hydroxyl)phenylazo]-2-naphthol-6-sulfonic acid (3) shows high selectivity for the colorimetric detection of Fe3+ and Co2+ among the tested metal ions. The detection limitations of 3 for determining Co2+ and Fe3+ were calculated to be 2.8 × 10?7 and 5.6 × 10?7 mol/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号