首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand‐protected gold nanoclusters (AuNCs) have emerged as a new class of electrochemiluminescence (ECL) luminophores for their interesting catalytic and emission properties, although their quantum yield (ΦECL) in aqueous medium is low with a poor mechanistic understanding of the ECL process. Now it is shown that drying AuNCs on electrodes enabled both enhanced electrochemical excitation by an electrocatalytic effect, and enhanced emission by aggregation‐induced ECL (AIECL) for 6‐aza‐2‐thiothymine (ATT) protected AuNCs with triethylamine (TEA) as a coreactant. The dried ATT‐AuNCs/TEA system resulted in highly stable visual ECL with a ΦECL of 78 %, and a similar enhancement was also achieved with methionine‐capped AuNCs. The drying enabled dual‐enhancement mechanism has solved a challenging mechanistic problem for AuNC ECL probes, and can guide further rational design of ECL emitters.  相似文献   

2.
We present spatiotemporal control of aggregation-induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer-sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission. The fluorescence intensity at the peak wavelength of 540 nm is tremendously enhanced with growth, meaning that AIEE is activated by optical manipulation. Amazingly, the switching on/off of the activation of AIEE is arbitrarily controlled by alternating the laser power. This result means that optical manipulation increases the local concentration, which overcomes the electrostatic repulsion between the protonated molecules, namely, optical manipulation changes the aggregate structure. The dynamics and mechanism in AIEE controlled by optical manipulation will be discussed from the viewpoint of molecular conformation and association depending on the laser power.  相似文献   

3.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation-induced emission gold clustoluminogens (AIE-Au) to achieve efficient low-dose X-ray-induced photodynamic therapy (X-PDT) with negligible side effects. The aggregates of glutathione-protected gold clusters (GCs) assembled through a cationic polymer enhanced the X-ray-excited luminescence by 5.2-fold. Under low-dose X-ray irradiation, AIE-Au strongly absorbed X-rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X-ray-induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE-Au effectively triggered the generation of reactive oxygen species with an order-of-magnitude reduction in the X-ray dose, enabling highly effective cancer treatment.  相似文献   

4.
5.
Gold nanoclusters (AuNCs) are attractive electrochemiluminescence (ECL) emitters because of their excellent stability, near IR emission, and biocompatibility. However, their ECL quantum yield is relatively low, and our limited fundamental understanding has hindered rational improvement of this parameter. Herein, we report drastic enhancement of the ECL of ligand‐stabilized AuNCs by on‐electrode pre‐oxidation with triethylamine (TEA) as a co‐reactant. The l ‐methionine‐stabilized AuNCs resulted in a record high ECL yield of 66 %. This strategy was successfully extended to other AuNCs, and it is more effective for ligand shells that allow more effective electron transfer. In addition, excitation of the pre‐oxidized ECL required a lower potential than conventional methods, and no additional instrument was required. This work opens avenues for solving a challenging problem of AuNC‐based ECL probes and enriches fundamental understanding, greatly broadening their potential applications.  相似文献   

6.
Capped chelating organic molecules are presented as a design principle for tuning heterogeneous nanoparticles for electrochemical catalysis. Gold nanoparticles (AuNPs) functionalized with a chelating tetradentate porphyrin ligand show a 110‐fold enhancement compared to the oleylamine‐coated AuNP in current density for electrochemical reduction of CO2 to CO in water at an overpotential of 340 mV with Faradaic efficiencies (FEs) of 93 %. These catalysts also show excellent stability without deactivation (<5 % productivity loss) within 72 hours of electrolysis. DFT calculation results further confirm the chelation effect in stabilizing molecule/NP interface and tailoring catalytic activity. This general approach is thus anticipated to be complementary to current NP catalyst design approaches.  相似文献   

7.
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance, dimensional stability, and unique sensitivity to external stimuli. In this work, we synthesized thiol-functionalized tetraphenylethylene (TPE) and constructed polymer gels through thiol-ene click reaction. The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism. In addition, due to the dual redox- and acid responsiveness of the polymer gels, in the presence of dithiothreitol and trifluoroacetic acid, fluorescence quenching of the polymer gels can be observed. This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging, cancer diagnosis and selfhealing materials.  相似文献   

8.
Crystallization-induced emission enhancement (CIEE) was demonstrated for the first time for electrochemilunimescence (ECL) with two new benzosiloles. Compared with their solution, the films of the two benzosiloles gave CIEE of 24 and 16 times. The mechanism of the CIEE-ECL was examined by spooling ECL spectroscopy, X-ray crystal structure analysis, photoluminescence, and DFT calculations. This CIEE-ECL system is a complement to the well-established aggregation-induced emission enhancement (AIEE) systems. Unique intermolecular interactions are noted in the crystalline chromophore. The first heterogeneous ECL system is established for organic compounds with highly hydrophobic properties.  相似文献   

9.
It is challenging to control the catalyst activation and deactivation by removal and addition of only one central atom, as it is almost impossible to precisely abstract an atom from a conventional catalyst and analyze its catalysis. Here we report that the loss of one central atom in Au25 (resulting in Au24) enhances the catalytic activity in the oxidation of methane compared to the original Au25. More importantly, the activity can be readily switched through shuttling the central atom into Au24 and out of Au25. This work will serve as a starting point for design rules on how to control catalytic performance of a catalyst by an atom alteration.  相似文献   

10.
Au clusters with protecting organothiolate ligands and core diameters less than 2 nm are molecule‐like structures, suitable for catalysis, optoelectronics and biology applications. The spectroscopy and electrochemistry of Au250 (Au25[(SCH2CH2Ph)18], SCH2CH2Ph=2‐phenylethanethiol) allowed us to construct a Latimer‐type diagram for the first time, which revealed a rich photoelectrochemistry of the cluster and the unique relationship to its various oxidation states and corresponding excited states. The occurrence of cluster electrochemiluminescence (ECL) was examined in the presence of tri‐n‐propylamine (TPrA) as a co‐reactant and was discovered to be in the near‐infrared (NIR) region with peak wavelengths of 860, 865, and 960 nm, emitted by Au25+*, Au250*, and Au25?*, respectively. The light emissions, with an efficiency up to 103 % relative to that of the efficient Ru(bpy)32+/TPrA system, depended on the kinetics of the reactions between the electrogenerated TPrA radical and Au25z (z=2+, 1+, 1?, and 2?) in the vicinity of the electrode or the bulk Au250. These thermodynamic and kinetic origins were further explored by means of spooling ECL and photoluminescence spectroscopy during a sweep of the potential or at a constant potential applied to the working electrode. NIR‐ECL emissions of the cluster can be tuned in wavelength and intensity by adjusting the applied potential and TPrA concentration based on the above discoveries.  相似文献   

11.
12.
13.
The mechanism of aggregation-induced emission, which overcomes the common aggregation-caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.  相似文献   

14.
Gold nanoparticles (AuNPs) are regarded as promising building blocks in functional nanomaterials for sensing, drug delivery and catalysis. One remarkable property of these particles is the localized surface plasmon resonance (LSPR), which gives rise to augmented optical properties through local field enhancement. LSPR also influences the nonlinear optical properties of metal NPs (MNPs) making them potentially interesting candidates for fast, high resolution nonlinear optical imaging. In this work we characterize and discuss the wavelength dependence of the hyper-Rayleigh scattering (HRS) behavior of spherical gold nanoparticles (GNP) and gold nanorods (GNR) in solution, from 850 nm up to 1300 nm, covering the near-infrared (NIR) window relevant for deep tissue imaging. The high-resolution spectral data allows discriminating between HRS and two photon photoluminescence contributions. Upon particle aggregation, we measured very large enhancements (ca. 104) of the HRS intensity in the NIR, which is explained by considering aggregation-induced plasmon coupling effects and local field enhancement. These results indicate that purposely designed coupled nanostructures could prove advantageous for nonlinear optical imaging and biosensing applications.  相似文献   

15.
以2-(6-氧化-6-氢-二苯基(c,e)<1,2>氧杂磷酰基)-1,4-二羟基苯(ODOPB) 为中心结构单元, 通过两步酯化反应, 在两侧分别引入4-戊氧基苯甲酰基和4-乙烯基苯甲酰基, 得到苯乙烯衍生物(MED).由于磷酰杂菲基团的大π共轭结构和极性共同作用, 使得形成聚集体后分子内转动受到限制, 降低了非辐射去活效率, 使 MED在达到一定聚集程度时, 荧光强度成倍增加, 呈现出聚集诱导发光增强(AIEE) 特性. 同时, Pt2+, Ru3+, Fe3+的加入对MED有显著的猝灭效果; 而Fe2+只是在形成聚集体过程中才有猝灭效果.  相似文献   

16.
有机化合物因成膜以后荧光淬灭而使其应用受到很大限制, 所以研究、开发能在聚集状态下呈现优异发光性能的新材料就尤为重要. 由于分子间π-π和极性共同相互作用, 使得磷酰杂菲环的转动受到限制, 从而使苯甲酸-2-[6-氧化-6-氢-二苯基(c,e)<1,2>氧杂磷酰基]-1,4-二羟基苯二酯(OP)在达到一定规整聚集程度时, 荧光强度成倍增加, 具有了聚集诱导发光增强(AIEE)性质. 实验结果表明: 浓度低于1×10-6 mol•L-1 的OP会失去AIEE性质; 浓度为1×10-4 mol•L-1的Hg2+, Fe2+和 Fe3+会分别淬灭浓度为1×10-5 mol•L-1 OP荧光强度的26%, 34%, 74%, 而Pb2+, Zn2+, Cd2+, Co2+, Mn2+, Cu2+, Ni2+, Ag等离子的淬灭效率却很低, 这一性质表明该化合物可以用作过渡金属离子的特异性检测材料.  相似文献   

17.
Enhancement of fluorescent radiation is of great importance for applications including biological imaging, high-sensitivity detectors, and integrated light sources. Strong electromagnetic fields can be created around metallic nanoparticles or in gap of nanostructures, where the local state density of radiating mode is then dramatically enhanced. While enhanced fluorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs, simultaneous mediation of absorption and emission processes of fluorescent emitters remains challenging in metallic nanostructures. Here, we investigate fluorescent emission mediated by metal-dielectric-metal fishnet metasurface, in which localized surface plasmon (LSP) and magnetic plasmon polaritons (MPPs) modes are coupled with absorption and emission processes, respectively. For absorption process, coupling of the LSP mode enables spatially-selective excitation of the fluorescent emitters by rotating the polarization of the pump laser beam. In addition, the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the fluorescent emission by introducing a rectangular fishnet structure. All the experimental observations are further corroborated by finite-difference time-domain simulations. The structure reported here has great potentialfor application to color light-emitting devices and nanoscale integrated light sources.  相似文献   

18.
以2-(6-氧化-6-氢-二苯基(c,e)<1,2>氧杂磷酰基)-1,4-二羟基苯(OOPB) 为中心结构单元,通过两步酯化反应,在两侧分别引入4-戊氧基苯甲酰基和4-乙烯基苯甲酰基,得到苯乙烯衍生物(ME).由于磷酰杂菲基团的大π共轭结构和极性共同作用,使得形成聚集体后分子内转动受到限制,降低了非辐射去活效率,使 ME在达到一定聚集程度时,荧光强度成倍增加,呈现出聚集诱导发光增强(AIEE) 特性. 同时,Pt2+,Ru3+,Fe3+的加入对ME有显著的猝灭效果;而 Fe2+ 只是在形成聚集体过程中才有猝灭效果.  相似文献   

19.
The concept of aggregation-induced emission (AIE) has opened new opportunities in many research fields. Motivated by the unique feature of AIE fluorogens (AIEgens), during the past decade, many AIE molecular probes and AIE nanoparticle (NP) probes have been developed for sensing, imaging and theranostic applications with excellent performance outperforming conventional fluorescent probes. This Review summarizes the latest advancement of AIE molecular probes and AIE NP probes and their emerging biomedical applications. Special focus is to reveal how the AIE probes are evolved with the development of new multifunctional AIEgens, and how new strategies have been developed to overcome the limitations of traditional AIE probes for more translational applications via fluorescence imaging, photoacoustic imaging and image-guided photodynamic/photothermal therapy. The outlook discusses the challenges and future opportunities for AIEgens to advance the biomedical field.  相似文献   

20.
Ligand-induced surface restructuring with heteroatomic doping is used to precisely modify the surface of a prototypical [Au25(SR1)18] cluster ( 1 ) while maintaining its icosahedral Au13 core for the synthesis of a new bimetallic [Au19Cd3(SR2)18] cluster ( 2 ). Single-crystal X-ray diffraction studies reveal that six bidentate Au2(SR1)3 motifs (L2) attached to the Au13 core of 1 were replaced by three quadridentate Au2Cd(SR2)6 motifs (L4) to create a bimetallic cluster 2 . Experimental and theoretical results demonstrate a stronger electronic interaction between the surface motifs (Au2Cd(SR2)6) and the Au13 core, attributed to a more compact cluster structure and a larger energy gap of 2 compared to that of 1 . These factors dramatically enhance the photoluminescence quantum efficiency and lifetime of crystal of the cluster 2 . This work provides a new route for the design of a wide range of bimetallic/alloy metal nanoclusters with superior optoelectronic properties and functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号