首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3D‐MoS2 can adsorb organic molecules and provide multidimensional electron transport pathways, implying a potential application for environment remediation. Here, we study the degradation of aromatic organics in advanced oxidation processes (AOPs) by a 3D‐MoS2 sponge loaded with MoS2 nanospheres and graphene oxide (GO). Exposed Mo4+ active sites on 3D‐MoS2 can significantly improve the concentration and stability of Fe2+ in AOPs and keep the Fe3+/Fe2+ in a stable dynamic cycle, thus effectively promoting the activation of H2O2/peroxymonosulfate (PMS). The degradation rate of organic pollutants in the 3D‐MoS2 system is about 50 times higher than without cocatalyst. After a 140 L pilot‐scale experiment, it still maintains high efficiency and stable AOPs activity. After 16 days of continuous reaction, the 3D‐MoS2 achieves a degradation rate of 120 mg L?1 antibiotic wastewater up to 97.87 %. The operating cost of treating a ton of wastewater is only US$ 0.33, suggesting huge industrial applications.  相似文献   

2.
The application of advanced oxidation processes (AOPs) based on sulfate radicals for degrading persistent organic pollutants faces challenges due to the inefficient activation of peroxydisulfate (PDS) oxidant. Herein, a composite CoFe2O4/MoS2-xOy (CFM) catalyst consisting of CoFe2O4 nanoparticles uniformly dispersed on the nanosheets of oxygen-incorporated MoS2 (MoS2-xOy) with flower-like morphology are fabricated through a facile two-step hydrothermal method, which results in the enhanced activation of PDS and a highly efficient degradation of phenolic pollutants. The oxygen-doping in MoS2-xOy leads to unsaturated sulfur and active sites on the surface of MoS2 for accelerating the rate limiting step of FeIII/FeII reduction cycle in PDS-CFM reaction. Aiming at the refractory organic pollutants in actual coking wastewater, CFM co-catalyst is introduced into a hydrogel made up of polyvinyl alcohol (PVA) and coal-tar pitch oxides (PO) to construct a multifunctional CFM@PO/PVA hydrogel. Upon hybrid CFM@PO/PVA, the coupling of the enhanced AOP with solar-driven interfacial vapor generation (SIVG) technology contributes to the degradation efficiency, the removal rate of phenol in solution and the total organic carbon in coking wastewater can reach 98 % and 91 %, respectively. The integration of heterogeneous AOPs with SIVG system provides a feasible strategy for the eco-friendly efficient purification of industrial wastewater.  相似文献   

3.
Advanced Oxidation Processes (AOPs) for wastewater treatment are gaining more importance since biological treatment plants are often not sufficient for highly contaminated or toxic wastewaters. In order to find out the most efficient and cheap AOP, investigations were concentrated on methods that can use sunlight. The systems TiO2/UV, Fe2+/H2O2/UV (Photo-Fenton reaction), Fe2+/O2/UV and Fe2+/O3/UV were compared. Since the Photo-Fenton system was the most effective, pilot plant experiments with industrial wastewaters and sunlight experiments were carried out. Finally a rough cost estimate shows that Photo-Fenton treatment with sunlight is far cheaper than other available AOPs, namely ozonization.  相似文献   

4.
《中国化学快报》2023,34(1):107253
This study explored the catalytic mechanism and performance impacted by the materials ratio of Fe3O4-GOx composites in three typical advanced oxidation processes (AOPs) of O3, peroxodisulfate (PDS) and photo-Fenton processes for tetracycline hydrochloride (TCH) degradation. The ratio of GO in the Fe3O4-GOx composites exhibited different trends of degradation capacity in each AOPs based on different mechanisms. Fe3O4-rGO20wt% exhibited the optimum catalytic performance which enhanced the ozone decomposition efficiency from 33.48% (ozone alone) to 51.83% with the major reactive oxygen species (ROS) of O2??. In PDS and photo-Fenton processes, Fe3O4-rGO5wt% had the highest catalytic performance in PDS and H2O2 decomposition for SO4??, and ?OH generation, respectively. Compared with using PDS alone, PDS decomposition rate and TCH degradation rate could be increased by 5.97 and 1.73 times under Fe3O4-rGO5wt% catalysis. In the photo-Fenton system, Fe3O4-rGO5wt% with the best catalyst performance in H2O2 decomposition, and TCH degradation rate increased by 2.02 times compared with blank group. Meantime, the catalytic mechanisms in those systems of that the ROS produced by conversion between Fe2+/Fe3+ were also analyzed.  相似文献   

5.
Active pharmaceutical intermediates (API) in waste waters have adverse effects on aquatic life and environment. The API have high COD value and low BOD3 and hence difficult to treat biologically. In this study, advanced oxidation processes (AOPs) utilizing the H2O2/Fe+2, Fenton reactions were investigated in lab-scale experiments for the degradation of Atenolol containing waste water streams. The experimental results showed that the Fenton process using H2O2/Fe+2 was the most effective treatment process. With Fenton processes, COD reduction of wastewater can be achieved successfully. It is suggested that Fenton processes are viable techniques for the degradation of Atenolol from the waste water stream with relatively low toxic by-products in the effluent which can be easily biodegraded in the activated sludge process. Hence, the Fenton process with H2O2/Fe+2 is considered a suitable pretreatment method to degrade the active pharmaceutical molecules and to improve the biodegradability of waste water.  相似文献   

6.
Water pollution derived from organic pollutants is one of the global environmental problems. The Fenton reaction using Fe2+ as a homogeneous catalyst has been known as one of clean methods for oxidative degradation of organic pollutants. Here, a layered double hydroxide (Fe2+Al3+-LDH) containing Fe2+ and Al3+ in the structure was used to develop a “heterogeneous” Fenton catalyst capable of mineralizing organic pollutants. We found that sulfate ion (SO42−) immobilized on the Fe2+Al3+-LDH significantly facilitated oxidative degradation (mineralization) of phenol as a model compound of water pollutants to carbon dioxide (CO2) in a heterogeneous Fenton process. The phenol conversion and mineralization efficiency to CO2 reached >99% and ca. 50%, respectively, even with a reaction time of only 60 min.  相似文献   

7.
《中国化学快报》2020,31(10):2803-2808
Although MoS2 has been proved to be a very ideal cocatalyst in advanced oxidation process (AOPs), the activation process of peroxymonosulfate (PMS) is still inseparable from metal ions which inevitably brings the risk of secondary pollution and it is not conducive to large-scale industrial application. In this study, the commercial MoS2, as a durable and efficient catalyst, was used for directly activating PMS to degrade aromatic organic pollutant. The commercial MoS2/PMS catalytic system demonstrated excellent removal efficiency of phenol and the total organic carbon (TOC) residual rate reach to 25%. The degradation rate was significantly reduced if the used MoS2 was directly carried out the next cycle experiment without any post-treatment. Interestingly, the commercial MoS2 after post-treated with H2O2 can exhibit good stability and recyclability for cyclic degradation of phenol. Furthermore, the mechanism for the activation of PMS had been investigated by density functional theory (DFT) calculation. The renewable Mo4+ exposed on the surface of MoS2 was deduced as the primary active site, which realized the direct activation of PMS and avoided secondary pollution. Taking into account the reaction cost and efficient activity, the development of commercial MoS2 catalytic system is expected to be applied in industrial wastewater.  相似文献   

8.
Hexaflumuron, one of the benzoylphenylurea insect growth regulators, can be leached into surface water and thus having a potential impact on aquatic organisms. In this study, the photodegradation processes of hexaflumuron under high‐pressure mercury lamp irradiation were assessed. The photodegradation kinetics were studied, as were the effects of pH, different light sources, organic solvents and environmental substances, including nitrate ions (NO3?), nitrite ions (NO2?), ferrous ions (Fe2+), ferric ions (Fe3+), humic acid, sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2). Three photodegradation products in methanol were identified by gas chromatography‐mass spectrometry (GC‐MS). In general, the degradation of hexaflumuron followed first‐order kinetics. In the four media studied, the photodegradation rate order was n‐hexane > methanol > ultrapure water > acetone. Faster degradation was observed under high‐pressure mercury lamp irradiation than under xenon lamp irradiation. The pH had a considerable effect, with the most rapid degradation occurring at pH 5.0. The photodegradation rate of hexaflumuron was promoted in the presence of NO3?, NO2?, Fe2+, humic acid, SDS and H2O2, but inhibited by Fe3+. Moreover, the presumed photodegradation pathway was proposed to be the cleavage of the urea linkage.  相似文献   

9.
Three priority pollutants, i.e. mono-, di-, and trichloroacetic acids, were degraded by the conventional Fenton AOP system (Fe2+ and H2O2). The results obtained suggest that the degradation decreased in the order: monochloroacetic, dichloroacetic, and trichloroacetic acid. The best of advanced oxidation processes (AOPs) for the degradation of trichloroacetic acid was reductive dechlorination with the use of zero-valent iron (Fe°). The results of Escherichia coli toxicity tests revealed that the reagents’ toxicity after the Fenton treatment process was decreased.  相似文献   

10.
In this paper, x (=2, 5, 7 and 10mol%) Co2+-doped Fe2O3 (xCo:Fe2O3) nanoparticles with enhanced photocatalytic activity have been reported. xCo:Fe2O3 nanoparticles were successfully prepared by co-precipitation followed thermal decomposition method. The structural, optical and morphological properties of the prepared samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance (DR) UV–visible absorption spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained results revealed that Co2+ ions were well doped within the lattices of Fe2O3. Also, Co2+ ions suppress the formation of the most stable α- Fe2O3 and stabilize less stable γ-Fe2O3 at 450 °C. The photocatalytic activity of xCo:Fe2O3 was examined by using pararosaniline (PR) dye. It was found that photocatalytic degradation of PR depends on dopant concentration (Co2+ ions). Relatively, the highest photocatalytic activity was observed for 5%Co:Fe2O3 nanoparticles. The plausible photocatalytic degradation pathway of PR at xCo:Fe2O3 surface has also been proposed.  相似文献   

11.
The active Fenton-like catalyst, obtained by highly dispersed Fe2O3 nanoparticles in size of 5 nm on the surface of zeolite Y, shows the excellent degradation efficiency to phenol higher than 90% under the mild conditions of room temperature and neutral solution, and the catalyst can be easily recovered with stable catalytic activity for 8 cycles.  相似文献   

12.
《中国化学快报》2023,34(3):107621
As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing antibiotics from wastewater, H2O2-based advanced oxidation processes (AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability. Hence this review critically discusses: (i) Recent research progress of AOPs with the addition of H2O2 for antibiotics removal through different methods of H2O2 activation; (ii) recent advances in AOPs that can in-situ generate and activate H2O2 for antibiotics removal; (iii) H2O2-based AOPs as a combination with other techniques for the degradation and mineralization of antibiotics in wastewater. Future perspectives about H2O2-based AOPs are also presented to grasp the future research trend in the area.  相似文献   

13.
Zero-valent iron (Fe0) has recently been proposed as a potential candidate for the degradation of pharmaceuticals, because Fe0 can release dissolved iron species, activate molecular oxygen, and react with oxidant species. Additionally, due to its small particle size and large surface area, this catalyst can provide better degradation results, compared to traditional processes. This work focuses on the elimination of pharmaceuticals present in different water matrices, considering the potential harm that these substances can cause in the environment. The mechanisms of pharmaceutical removal using Fe0 particles include reduction, adsorption, precipitation, and oxidation processes. Most studies have focused on oxidation processes in the presence of Fe0 and radicals derived from oxidants such as hydrogen peroxide (H2O2), ozone (O3), peroxysulfate (SO52−), peroxodisulfate (S2O82−), and oxygen (O2). Most of the results have shown that high percentages of pharmaceuticals can be removed, degraded, and mineralized. The mechanisms of oxidation and the parameters that influence the degradation of pharmaceuticals, as well as the possible degradation pathways, are discussed here. This review provides information on trends of different processes that use Fe0, considering aspects such as particle size, type of matrix, the pharmaceuticals studied, and the results obtained that can improve understanding of new advances in the field of advanced oxidation processes (AOPs) for the degradation and elimination of pharmaceuticals.  相似文献   

14.
Visible light irradiation combined with homogeneous iron and/or hydrogen peroxide to degrade organic dye rhodamine B (RhB) and small molecular compound 2,4-dichlorophenol (2,4-DCP) in a home-made bottle reactor was assessed. The concen-tration of oxidize species, Fe3+ and Fe2+ were determined during the degradation process. The results demonstrated that visible light irradiation combined with electro-Fenton improved the degradation efficiency. Moreover, both RhB and 2,4-DCP were mineralized during visible light synergistic electro-Fenton oxidation process. 95.0% TOC (total organic carbon) removal rate of RhB occurred after 90 min and 96.7% of COD (chemical oxygen demand) removal rate after 65 min of irradiation. 91.3% TOC removal rate of 2,4-DCP occurred after 16 h of irradiation and 99.9% COD removal rate occurred after 12 h of illumination. The degradation and oxidation process was dominated by the hydroxyl radical ( · OH) generated in the system. Both the impressed electricity and dye sensitization by visible light facilitated the conversion between Fe3+ and Fe 2+ , thus, improving Fenton reaction efficiency.  相似文献   

15.
用酸催化溶胶-凝胶法制备了Fe3+掺杂TiO2/凹凸棒(Fe3+-TiO2/ATP)复合光催化剂,对其结构、微观形貌、光吸收性能和可见光下的光催化性能进行了表征。XRD和TEM测试结果表明,Fe3+-TiO2/ATP具有较好的热稳定性,经450 ℃热处理后的ATP晶体结构基本保持不变,锐钛矿TiO2均匀的分布在ATP表面,TiO2颗粒之间无团聚,且平均粒径小于纯TiO2。UV-Vis-DRS测试结果表明,Fe3+的掺杂可明显增强复合光催化剂对可见光的吸收,光响应范围拓展到了整个紫外-可见光区。在可见光下,Fe3+-TiO2/ATP复合光催化剂对亚甲基蓝具有很好的催化降解活性。Fe3+-TiO2/ATP的反应速率常数分别为TiO2/ATP、P25和纯TiO2的1.37、4.83和6.51倍。复合光催化剂的沉降性能优于纯TiO2和P25,易于分离。  相似文献   

16.
Piezo-catalytic self-Fenton (PSF) system has been emerging as a promising technique for wastewater treatment, while the competing O2 reductive hydrogen peroxide (H2O2) production and FeIII reduction seriously limited the reaction kinetics. Here, we develop a two-electron water oxidative H2O2 production (WOR−H2O2) coupled with FeIII reduction over a FeIII/BiOIO3 piezo-catalyst for highly efficient PSF. It is found that the presence of FeIII can simultaneously initiate the WOR−H2O2 and reduction of FeIII to FeII, thereby enabling a rapid reaction kinetics towards subsequent Fenton reaction of H2O2/FeII. The FeIII initiating PSF system offers exceptional self-recyclable degradation of pollutants with a degradation rate constant for sulfamethoxazole (SMZ) over 3.5 times as that of the classic FeII-PSF system. This study offers a new perspective for constructing efficient PSF systems and shatters the preconceived notion of FeIII in the Fenton reaction.  相似文献   

17.
Nano-scale zero-valent iron (nZVI) attached to Fe3O4 nanoparticles (Fe0@Fe3O4), which has better dispersibility and a larger specific surface area than the nanoparticles alone, were prepared and applied to the reductive dechlorination of carbon tetrachloride (CT). CT removal efficiencies by Fe0@Fe3O4 composites with different ratios of the two components were compared. Under optimum conditions, when the Fe0/Fe3O4 ratio was 1:2, almost no CT was detected after 50 min and it took only about 30 min to reach a removal efficiency of 90%, compared with 120 min for an Fe0/Fe3O4 ratio of 1:4. An increase in the amount of nZVI in the catalyst effectively improved the removal of CT and accelerated the reaction rate. Chloroform was the main product. Compared with Fe3O4 alone, a significant increase in the solution concentrations of ferrous and ferric ions occurred in the Fe0@Fe3O4 system: both Fe2+ and Fe3+ reached their maximum concentrations at 60 min and then tended to decline over the next 60 min. The increase in Fe2+ concentration was attributed to the reaction between nZVI and CT, which produces ferrous ions when electrons transfer from Fe0 to organic chlorides. Synergistic effects between the composite constituents promoted the relative rates of mass transfer to reactive sites and Fe2+ generated in solution facilitated the reduction of chlorinated organic pollutants by magnetite. Thus, Fe0@Fe3O4 nanoparticles effectively achieved reductive dechlorination of CT and provide an improved nZVI catalyst for the remediation of chlorinated organic compounds.  相似文献   

18.
Degradation of methyl tert-butyl ether (MTBE) with Fe2+/H2O2 was studied by purge-and-trap gas chromatography-mass spectrometry. MTBE was degraded 99% within 120 min under optimum conditions. MTBE was firstly degraded rapidly based on a Fe2+/H2O2 reaction and then relatively slower based on a Fe3+/H2O2 reaction. The dissolved oxygen decreased rapidly in the Fe2+/H2O2 reaction stage, but showed a slow increase in the Fe3+/H2O2 reaction stage. tert-Butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified as primary degradation products by mass spectrometry. A preliminary reaction mechanism involving two different pathways for the degradation of MTBE with Fe2+/H2O2 was proposed. This study suggests that degradation of MTBE can be achieved using the Fe2+/H2O2 process.  相似文献   

19.
The effect of simulated solar light on nitrobenzene degradation in Fe3+/H2O2 solutions was investigated under different experimental conditions. Consumption profiles of NBE and H2O2 display an autocatalytic kinetic behavior for both dark and photo-assisted degradation experiments. The rates of the initial slow phase that precedes the catalytic phase are significantly enhanced by irradiation, although the effect of simulated solar light on the rates of the fast phase is negligible. The absolute rates of the slow phase increase with the concentrations of Fe3+ and H2O2, whereas the initial rate of the degree of conversion increase decreases with organic matter loading. The reaction progress was characterized by HPLC, GC–MS, IC, TOC (total organic carbon) and toxicity analyses. The main products detected were 4-nitrophenol, 3-nitrophenol, 2-nitrophenol, 1,3-dinitrobenzene, phenol, oxalic acid, formic acid, NO2? and NO3?. Product distribution profiles are discussed in connection with TOC and toxicity measurements. The results show that dark treatment is neither capable of lowering the organic content nor capable of reducing the effluent toxicity to acceptable levels. On the other hand, photo-assisted processes induced by simulated solar light can significantly enhance both mineralization and detoxification efficiencies.  相似文献   

20.
Degradation of methyl orange (MO) was carried out by the photo-Fenton process (Fe2+/H2O2/UV) and photo-Fenton-like processes (Fe3+/H2O2/UV, Fe2+/S2O82−/UV, and Fe3+/S2O82−/UV) at the acidic pH of 3 using hydrogen peroxide and ammonium persulfate (APS) as oxidants. Oxidation state of iron had a significant influence on the efficiency of photo-Fenton/photo-Fenton-like processes. It was found that a process with a source of Fe3+ ions as the catalyst showed higher efficiency compared to a process with the Fe2+ ion as the catalyst. H2O2 served as a better oxidant for both oxidation states of iron compared to APS. The lower efficiency of APS is attributed to the generation of excess protons which scavenges the hydroxyl radicals necessary for degradation. Further, the sulfate ions produced from S2O82− form a complex with Fe2+/Fe3+ ions thereby reducing the concentration of free iron ions in the solution. This process can also reduce the concentration of hydroxyl radicals in the solution. Efficiency of the various MO degradation processes follows the order: Fe3+/H2O2/UV, Fe3+/APS/UV, Fe2+/H2O2/UV, Fe2+/APS/UV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号