首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Microporous metal–organic frameworks (MOFs) are comparatively new porous materials. Because the pores within such MOFs can be readily tuned through the interplay of both metal‐containing clusters and organic linkers to induce their size‐selective sieving effects, while the pore surfaces can be straightforwardly functionalized to enforce their different interactions with gas molecules, MOF materials are very promising for gas separation. Furthermore, the high porosities of such materials can enable microporous MOFs with optimized gas separation selectivity and capacity to be targeted. This Focus Review highlights recent significant advances in microporous MOFs for gas separation.  相似文献   

2.
陈莲芬  莫炜娴  刘秋仪  康健 《化学通报》2023,86(8):916-922,907
金属有机骨架材料(MOFs)作为异相催化剂受到了日益广泛的关注。在众多经典MOFs结构中,HKUST-1及其衍生材料是研究最多的类型之一。HKUST-1具有原料简单、易于合成、结构稳定、孔隙率高等多种优点,在异相催化领域中具有广阔的应用前景。已有多种HKUST-1相关材料被用作催化剂,包括HKUST-1本身、缺陷型结构、负载活性客体分子的复合型材料以及HKUST-1衍生的多孔碳纳米材料等。本文围绕HKUST-1作为催化剂的结构设计以及在不同催化反应中的应用展开总结与介绍,以期为相关MOFs材料的设计和催化研究提供一定参考。  相似文献   

3.
Metal organic frameworks (MOFs) are a new class of nanoporous materials that have many potential advantages over traditional nanoporous materials for several chemical technologies including gas adsorption, catalysis, membrane-based gas separation, sensing, and biomedical devices. Knowledge on the interaction of guest molecules with the MOF surface is required to design and develop these MOF-based processes. In this review, we examine the importance of identification of gas adsorption sites in MOFs using the current state-of-the-art in experiments and computational modeling. This review provides guidelines to design new MOFs with useful surface properties that exhibit desired performances, such as high gas storage capacity, and high gas selectivity.  相似文献   

4.
Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal–organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host–guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host–guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.  相似文献   

5.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

6.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   

7.
Endowed with chiral channels and pores, chiral metal–organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality‐enriched MOFs with accessible pores. The ability of the materials to form host–guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed‐matrix membranes (MMMs) composed of chirality‐enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation.  相似文献   

8.
Metal–organic frameworks (MOFs) are shown to be good examples of a new class of crystalline porous materials for guest encapsulation. Since the encapsulation/release of guest molecules in MOF hosts is a reversible process in nature, how to prevent the leaching of guests from the open pores with minimal and nondestructive modifications of the structure is a critical issue. To address this issue, we herein propose a novel strategy of encapsulating guests by introducing size‐matching organic ligands as bolts to lock the pores of the MOFs through deliberately anchoring onto the open metal sites in the pores. Our proposed strategy provides a mechanical way to prevent the leaching of guests and thereby has less dependence on the specific chemical environment of the hosts, thus making it applicable for a wide variety of existing MOFs once the size‐matching ligands are employed.  相似文献   

9.
Converting light hydrocarbons such as methane, ethane, propane, and cyclohexane into value-added chemicals and fuel products by means of direct C−H functionalization is an attractive method in the petrochemical industry. As they emerge as a relatively new class of porous solid materials, metal–organic frameworks (MOFs) are appealing as single-site heterogeneous catalysts or catalytic supports for C−H bond activation. In contrast to the traditional microporous and mesoporous materials, MOFs feature high porosity, functional tunability, and molecular-level characterization for the study of structure–property relationships. These virtues make MOFs ideal platforms to develop catalysts for C−H activation with high catalytic activity, selectivity, and recyclability under relatively mild reaction conditions. This review highlights the research aimed at the implementation of MOFs as single-site heterogeneous catalysts for C−H bond activation. It provides insight into the rational design and synthesis of three types of stable MOF catalysts for C−H bond activation, that is, i) metal nodes as catalytic sites, ii) the incorporation of catalytic sites into organic struts, and iii) the incorporation of catalytically active guest species into pores of MOFs. Here, the rational design and synthesis of MOF catalysts that lead to the distinct catalytic property for C−H bond activation are discussed along with the post-synthesis of MOFs, intriguing functions with MOF catalysts, and microenvironments that lead to the distinct catalytic properties of MOF catalysts.  相似文献   

10.
The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr3O(OH)(H2O)2(terephthalate)3 (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr3, MAPbBr3 (MA+ = methylammonium), and (FA)PbBr3 (FA+ = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr3 (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls.

We demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites.  相似文献   

11.
Photoactive metal-organic frameworks (MOFs) provide an important class of functional porous materials for a wide range of applications including light harvesting, photocatalysis and photodynamic therapy. Two strategies have been employed in the development of photoactive MOFs, one in which the photoactive element is incorporated as an element of the framework itself and the other in which the photoactive element serves as a guest within the MOF cavities. Transition metal polyimines have now been non-covalently incorporated within the cavities of a large number of MOFs with the RuII-polyimine being the most widely examined guest complex. Previous studies have demonstrated that the nature of the cavity modulates the Ru-polyimine photophysics. Here, an IrIII(terpyridine)(phenylpyridine)Cl complex has been encapsulated within the Zn-polyhedral MOF, USF-2. Unlike the Ru-polyimines, the excited state photophysics associated with the encapsulated Ir polyimine shows very little change in either the steady state emission and emission lifetime. The slight decrease in emission lifetime is attributed to energy transfer between encapsulated Ir complexes. These results indicate that transition metal polyimines that exhibit excited state structural changes demonstrate the largest perturbations upon confinement.  相似文献   

12.
Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in a wide variety of fields. The knowledge about the detailed interactions between MOFs and guest molecules is critical for the understanding of their structure-property relationships at working conditions. In this review, recent advances for solid-state NMR studies of host–guest chemistry of MOFs in the application fields of gaseous adsorption, chemical separation, drug delivery, chemical sensor, and heterogeneous catalysis were briefly introduced. The adsorption property and dynamic behavior of adsorbed gases confined inside the MOFs channels were elucidated from variable-temperature (VT) solid-state NMR. Moreover, the detailed mechanism of gas-phase and liquid-phase adsorptive separations on MOFs adsorbents was uncovered on the basis of solid-state NMR measurements. Multi-nuclear 1H, 13C, 15N, and 31P MAS NMR was utilized to explore the interactions between drug molecules and MOFs at the atomic scale to monitor the controlled release process of drugs. Furthermore, the investigation of the interactions between guest molecules and MOFs in the application areas of chemical sensor, toxic chemicals removal, and catalysis using solid-state NMR was briefly discussed as well.  相似文献   

13.
Photonic materials use photons as information carriers and offer the potential for unprecedented applications in optical and optoelectronic devices. In this study, we introduce a new strategy for photonic materials using metal–organic frameworks (MOFs) as the host for the rational construction of donor–acceptor (D–A) heterostructure crystals. We have engineered a rich library of heterostructure crystals using the MOF NKU‐111 as a host. NKU‐111 is based upon an electron‐deficient tridentate ligand (acceptor) that can bind to various electron‐rich guests (donors). The resulting heterocrystals exhibit spatially segregated multi‐color emission resulting from the guest‐dependent charge‐transfer (CT) emission. Spatially effective mono‐directional energy transfer results from tuning the energy gradient between adjacent domains through the selection of donor guest molecules, which suggests potential applications in integrated optical circuit devices, for example, photonic diodes, on‐chip signal processing, optical logic gates.  相似文献   

14.
Metal–organic frameworks (MOFs), as a porous frame material, exhibit considerable electrical conductivity. In recent decades, research on the proton conductivity of MOFs has made gratifying progress. In this review, the designable guest molecules encapsulated into MOFs are summarized and generalized into four types in terms of promoting proton conductive performance, and then recent progress in the promotion of proton conductivity by MOFs encapsulating guest molecules is discussed. The existing challenges and prospects for the development of this strategy for promoting MOFs’ proton conductivity are also listed.  相似文献   

15.
Semiconductor‐based photocatalysis is an environmental friendly and cost‐effective technique for water treatment. Due to their unique properties, metal–organic frameworks (MOFs) are considered as ideal platform to develop composite photocatalyst. In this study, Bismuth oxychloride (BiOCl) was first attempt to be incorporated with highly stable MOFs, UiO‐66(Zr) by hydrothermal reaction. Different characterization methods including X‐ray diffraction, Scanning electron microscopy, Fourier transform infrared spectroscope, X‐ray photoelectron spectroscopy had been used to prove the successful synthesis of composite photocatalyst. The resultant BiOCl/UiO‐66 composite showed higher photodegradation performance of Rhodamine B (RhB) under ultraviolet and visible light irradiation than that of pristine materials and their mechanically mixed sample. In addition, the composite exhibited good structural stability and reusability. The photocatalytic mechanism of RhB degradation over the composite under visible light proceeded via a photosensitization process. A better adsorptivity of RhB and effective electron transfer within the hybrid material might be responsible for the enhanced photocatalytic performance.  相似文献   

16.
Recent advances in host–guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non‐covalent interactions provide vast possibilities of manipulating supramolecular self‐assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self‐assemblies through host–guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli‐responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co‐delivery and site‐specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host–guest chemistry with biological interface science are proposed.  相似文献   

17.
The integration of metal/metal oxide nanoparticles (NPs) into metal–organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection–sacrifice (TPS) method to encapsulate metastable NPs such as Cu2O into MOFs. SiO2 was used as both a protective shell for Cu2O nanocubes and a sacrificial template for forming a yolk–shell structure. The obtained Cu2O@ZIF‐8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4‐nitrophenol with high activity. This is the first report of a Cu2O@MOF‐type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials.  相似文献   

18.
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF-based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF-based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF-based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF-based ORR electrocatalysts are also discussed.  相似文献   

19.
Metal-organic frameworks (MOFs) are very promising host materials for nanoscale guest materials. However, some MOFs such as MIL-53 are known to undergo phase transitions which can complicate the guest particle size control. In this study, Pd nanoparticles embedded in Al-MIL-53 were synthesised via (a) electrodeposition and (b) gas-phase reduction. A thorough structural investigation revealed that each synthesis method most likely favoured a different phase of Al-MIL-53, presenting the possibility of MOF phase selection as a technique for size control of embedded nanoparticles. For the first time, we hereby report the use of pair distribution function analysis to successfully investigate the structure and morphology of guest particles embedded in a MOF host.  相似文献   

20.
The design of microporous hybrid materials, tailored for diverse applications, is a key to address our modern society's imperative of sustainable technologies. Prerequisites are flexible customization of host–guest interactions by incorporating various types of functionality and by adjusting the pore structure. On that score, metal–organic frameworks (MOFs) have been the reference in the past decades. More recently, a new class of microporous hybrid materials emerged, microporous organically pillared layered silicates (MOPS). MOPS are synthesized by simple ion exchange of organic or metal complex cations in synthetic layered silicates. MOFs and MOPSs share the features of “component modularity” and “functional porosity”. While both, MOFs and MOPS maintain the intrinsic characteristics of their building blocks, new distinctive properties arise from their assemblage. MOPS are unique since allowing for simultaneous and continuous tuning of micropores in the sub-Ångström range. Consequently, with MOPS the adsorbent recognition may be optimized without the need to explore different framework topologies. Similar to the third generation of MOFs (also termed soft porous crystals), MOPS are structurally ordered, permanently microporous solids that may also show a reversible structural flexibility above a distinct threshold pressure of certain adsorbents. This structural dynamism of MOPS can be utilized by meticulously adjusting the charge density of the silicate layers to the polarizability of the adsorbent leading to different gate opening mechanisms. The potential of MOPS is far from being fully explored. This Concept article highlights the main features of MOPS and illustrates promising directions for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号