首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A strategy is presented that enables the quantitative assembly of a heterobimetallic [PdPtL4]4+ cage. The presence of two different metal ions (PdII and PtII) with differing labilities enables the cage to be opened and closed selectively at one end upon treatment with suitable stimuli. Combining an inert PtII tetrapyridylaldehyde complex with a suitably substituted pyridylamine and PdII ions led to the assembly of the cage. 1H and DOSY NMR spectroscopy and ESI mass spectrometry data were consistent with the quantitative formation of the cage, and the heterobimetallic structure was confirmed using single‐crystal X‐ray crystallography. The structure of the host–guest adduct with a 2,6‐diaminoanthraquinone guest molecule was determined. Addition of N,N′‐dimethylaminopyridine (DMAP) resulted in the formation of the open‐cage [PtL4]2+ compound and [Pd(DMAP)4]2+ complex. This process could then be reversed, with the reformation of the cage, upon addition of p‐toluenesulfonic acid (TsOH).  相似文献   

2.
Metallosupramolecular chemistry has attracted the interest of generations of researches due to the versatile properties and functionalities of oligonuclear coordination complexes. Quite a number of different discrete cages were investigated, mostly consisting of only one type of ligand and one type of metal cation. Looking for ever more complex structures, heterobimetallic complexes became more and more attractive, as they give access to new structural motifs and functions. In the last years substantial success has been made in the design and synthesis of cages consisting of more than one type of metal cations, and a rapidly growing number of functional materials has appeared in the literature. This Minireview describes recent developments in the field of discrete heterometallic macrocycles and cages focusing on functional materials that have been used as host-systems or as magnetic, photo-active, redox-active, and even catalytically active materials.  相似文献   

3.
The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stopped-flow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail. Two contrasting mechanisms were identified: The symmetric dicationic 2,7-dimethyldiazapyrenium shows a cation-independent complex dissociation mechanism coupled to deceleration of the ingression in the presence of alkali and alkaline earth cations (Mn+) due to competitive formation of CB7–Mn+ complexes. A much richer, unprecedented kinetic behaviour was observed for the ingression and egression of the monocationic and non-symmetric berberine (B+). The formation of ternary complex B+–CB7–Mn+ was unambiguously revealed. A difference of more than two orders of magnitude was found in the equilibrium constants of Mn+ binding to B+–CB7 inclusion complex. Large cations, such as K+ and Ba2+, also promoted B+ expulsion from the ternary complex in a bimolecular process. This study reveals a previously hidden mechanistic picture and motivates systematic kinetic investigations of other host–guest systems.  相似文献   

4.
A viologen derivative carrying a benzimidazole group ( V-P-I 2+; viologen–phenylene–imidazole V-P-I ) can be dimerized in water using cucurbit[8]uril (CB[8]) in the form of a 2:2 complex resulting in a negative shift of the guest pKa, by more than 1 pH unit, contrasting with the positive pKa shift usually observed for CB-based complexes. Whereas 2:2 complex protonation is unclear by NMR, silver cations have been used for probing the accessibility of the imidazole groups of the 2:2 complexes. The protonation capacity of the buried imidazole groups is reduced, suggesting that CB[8] could trigger proton release upon 2:2 complex formation. The addition of CB[8] to a solution containing V-P- I 3+ indeed released protons as monitored by pH-metry and visualized by a coloured indicator. This property was used to induce a host/guest swapping, accompanied by a proton transfer, between V-P-I 3+ ⋅ CB[7] and a CB[8] complex of 1-methyl-4-(4-pyridyl)pyridinium. The origin of this negative pKa shift is proposed to stand in an ideal charge state, and in the position of the two pH-responsive fragments inside the two CB[8] which, alike residues engulfed in proteins, favour the deprotonated form of the guest molecules. Such proton release triggered by a recognition event is reminiscent of several biological processes and may open new avenues toward bioinspired enzyme mimics catalyzing proton transfer or chemical reactions.  相似文献   

5.
Molecular or supramolecular level photoluminescence (PL) modulation combining chemical and photonic input/output signals together in an integrated system can provide potential high-density data memorizing and process functions intended for miniaturized devices and machines. Herein, a PL-responsive supramolecular coordination cage has been demonstrated for complex interactions with redox-active guests. PL signals of the cage can be switched and modulated by adding or retracting Fc derivatives or converting TTF into different oxidation states through chemical or photochemical pathways. As a result, reversible or stepwise PL responses are displayed by these host–guest systems because of the occurrence of photoinduced electron-transfer (PET) or fluorescence resonance energy transfer (FREnT) processes, providing unique nanodevice models bearing off/on logic gates or memristor-like sequential memory and Boolean operation functions.  相似文献   

6.
Some biological receptors change their shapes and rigidity by metalation to recognize substrates precisely via adaptive guest binding process. Herein we present a semi-flexible tricyclic host molecule whose conformation is rigidified by dimetalation to uptake organic guests selectively. Considering two metal binding sites and an empty space between them, pillar[5]-bis-thiacrown (L) was synthesized. The tricyclic host L forms a disilver(I) complex [Ag2L(NO3)2], with an Ag⋅⋅⋅Ag separation of 9.976 Å. Binding studies based on 1H NMR including 2D NOESY and DOSY experiments towards α,ω-dicyanoalkanes [CN(CH2)nCN, n=2–6, shortly C2–C6] demonstrated that the dimetalated L, Ag2L preferentially recognizes C2 over other guests than that of free L. Furthermore, the dimetalated the host only uptakes C2 in the presence of other guests. Crystal structures support the idea that the space between two silver(I) centers plays a decisive role on the selective guest binding forming an Ag-C2-Ag@L arrangement via the length-selective recognition. This work demonstrates the chemical example of the adaptive guest binding and presents a new perspective on the metallosupramolecules of pillararenes.  相似文献   

7.
A modular approach has been developed for the synthesis of rigid linear di‐ and tritopic ligands based on a fused [6]polynorbornane scaffold. The design provides up to three sites for installing functionality, including both “ends” and a “central” position with the advantage that each region can be independently addressed during synthesis. To illustrate the utility of the approach, both pyridyl and picolyl units were incorporated to provide six new ligands, with centers and ends either matched or mismatched. Indeed, both [M2L4] cages with endohedral functionality and [M3L4] complexes were cleanly produced from these ligands with assembled structures confirmed by using 1H NMR spectroscopy, HRMS, and molecular modelling.  相似文献   

8.
Interactions between proteins frequently involve recognition sequences based on multivalent binding events. Dimeric 14-3-3 adapter proteins are a prominent example and typically bind partner proteins in a phosphorylation-dependent mono- or bivalent manner. Herein we describe the development of a cucurbit[8]uril (Q8)-based supramolecular system, which in conjunction with the 14-3-3 protein dimer acts as a binary and bivalent protein assembly platform. We fused the phenylalanine–glycine–glycine (FGG) tripeptide motif to the N-terminus of the 14-3-3-binding epitope of the estrogen receptor α (ERα) for selective binding to Q8. Q8-induced dimerization of the ERα epitope augmented its affinity towards 14-3-3 through a binary bivalent binding mode. The crystal structure of the Q8-induced ternary complex revealed molecular insight into the multiple supramolecular interactions between the protein, the peptide, and Q8.  相似文献   

9.
Developing the competence of molecular sorbents for energy-saving applications, such as C8 separations, requires efficient, stable, scalable, and easily recyclable materials that can readily transition to commercial implementation. Herein, we report an azobenzene-based cage for the selective separation of p-xylene isomer across a range of C8 isomers in both vapor and liquid states with selectivity that is higher than the reported all-organic sorbents. The crystal structure shows non-porous cages that are separated by p-xylene molecules through selective CH–π interactions between the azo bonds and the methyl hydrogen atoms of the xylene molecules. This cage is stable in solution and can be regenerated directly under vacuum to be used in multiple cycles. We envisage that this work will promote the investigation of the azo bond as well as guest-induced crystal-to-crystal phase transition in non-porous organic solids for energy-intensive separations.  相似文献   

10.
11.
Herein, a host–guest interaction–controlled photoproduct created by using cucurbit[7]uril (Q[7])-based pseudorotaxane structures is reported. The assembly exhibited controlled behavior towards the reduction of the ethylene (C=C) bond in the tetrakis(pyridin-4-yl)ethylene (TPyE) guest molecule under UV light irradiation. This can be attributed to the Q[7] encapsulation masking the four pyridinium arms of the guest, which inhibits planarization of the TPyE core to form the cyclization product. In particular, the strong affinity of Q[7] for the butyl-substituted guest (TPyE-4C) led to an unusual radical fluorescence emission of the photoirradiation-triggered intermediate of the guest molecule being observed in aqueous solution. This work provides a valuable paradigm and new insight for macrocycle-based host−guest interactions in supramolecular catalysis and luminescent radical materials.  相似文献   

12.
Cucurbit[n]urils (Q[n]s) are a relatively young family of macrocycles, consisting of glycoluril units bridged by methylene groups, and their unique structures have attracted extensive attention from chemists in recent decades. Due to the presence of a rigid hydrophobic inner cavity and two polar outer portals lined with carbonyl groups, Q[n]s not only encapsulate guest species into the cavity, but also coordinate with metal ions/clusters. Considerable achievements have been obtained in the fields of Q[n]s-based host–guest chemistry, coordination chemistry, as well as the combination of host–guest and coordination chemistry. Furthermore, the outer surface of Q[n]s has been demonstrated to be capable of interacting with definite species to generate supramolecular architectures in recent years. With more in-depth research into Q[n]s, their application studies have also emerged as a hot topic. This Minireview focuses on recent advances in the potential applications of solid-state materials based on Q[n]s and their derivatives for the capture and adsorption of hazardous chemicals from a solution or a gas mixture.  相似文献   

13.
Steady-state and time-resolved fluorescence techniques were used to study the thermodynamics of binding of a neutral polarity-sensitive guest, the methyl 2-naphthalenecarboxylate (2MN), with three cucurbiturils (CBn; n = 6, 7 and 8) in water. Association constants (K) were obtained from nonlinear regression analysis of the fluorescence intensity against [CB] in the 5–45°C range. 2MN complexed with CB7 exhibited a 1:1 stoichiometry (K ≈ 103 M? 1 at 25°C); however, it hardly did with CB6 (K < 10 M? 1) and it did not with the larger CB8 macrocyclic ring. The (1:1) 2MN:CB7 complexation process was accompanied by a small unfavourable enthalpy change and was, therefore, entropically governed. Molecular mechanics and molecular dynamics calculations in the presence of water were also used to study the geometry of the complexes formed and the driving forces responsible for their formation. The results were compared with those previously obtained for the complexation of the same guest, 2MN, with natural α-, β- and γ-cyclodextrins.  相似文献   

14.
The straightforward synthesis of a new hexahomotrioxacalix[3]arene-based ligand capped by a tren subunit was developed and the binding properties of the corresponding zinc complex were explored by NMR spectroscopy. Similarly to the closely related calix[6]tren-based systems, the homooxacalixarene core ensures the mononuclearity of the zinc complex and the metal center displays a labile coordination site for exogenous guests. However, very different host–guest properties were observed: i) in CDCl3, the zinc complex strongly binds a water molecule and is reluctant to recognize other neutral guests, ii) in CD3CN, the exo-coordination of anions prevails. Thus, in strong contrast to the calix[6]tren-based systems, the coordination of neutral guests that thread through the small rim and fill the polyaromatic cavity was not observed. This unique behaviour is likely due to the fact that the 18-membered ethereal macrocycle is too small to let a molecule threading through it. This work illustrates the key role played by the second coordination sphere in the binding properties of metal complexes.  相似文献   

15.
Chiral diamides and tetramidic resorcin[4]arenes deriving from (R,R)-1,2-diaminocyclohexane and (S,S)-1,2-diphenylethylendiamine, and a valine containing resorcin[4]arene have been compared by NMR in the enantiodiscrimination of mandelic acid. The relevance of cooperation between side arms and external surface of resorcin[4]arene core has been ascertained.  相似文献   

16.
A closed metallomolecular cage based on the tris(saloph) framework, in which its aperture can be opened by disulfide exchange, was designed. At the apertures of the molecular cage, bridging diamine ligands having a disulfide bond were introduced to close the cage structure. These bridging ligands efficiently blocked the uptake of a guest, Cs+, but the presence of a thiolate anion significantly accelerated the guest uptake. This clearly means that this cage complex became open by the addition of the thiolate anion, because the cage closure becomes more dynamic due to the disulfide exchange reaction.  相似文献   

17.
The synthesis of tetranuclear gold complexes, a structurally unprecedented octanuclear complex with a planar [AuI8] core, and pentanuclear [AuI4MI] (M=Cu, Ag) complexes is presented. The linear [AuI4] complex undergoes C?H functionalization of carbonyl compounds under mild reaction conditions. In addition, [AuI4AgI] catalyzes the carbonylation of primary amines to form ureas under homogeneous conditions with efficiencies higher than those achieved by gold nanoparticles.  相似文献   

18.
An aromatic expanded triphyrin, [22]triphyrin(6.6.0) 2 , containing a pyrrole unit, a bipyrrole moiety, and annulene links, was obtained from a tellurium-containing precursor meso-tetraaryl-26,28-ditellurasapphyrin 1 . The reaction path proceeds through an acid-promoted tellurium extrusion from 1 yielding directly 2 , characterized in a dicationic form by X-ray crystallography. In solution the neutral macrocycle 2 reveals flexibility typical for annulenes and it exists as a mixture of conformers that differ by the configuration of the annulene fragments, as proven by 1H NMR studies and analyzed by DFT methods. The conformation is controlled by protonation state, the nature of an interacting anion, solvent identity, and by interaction with water.  相似文献   

19.
Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional conformational restriction of rotations around the aryl/aryl bonds. Because the cucurbituril complexes are pH switchable, this system represents an efficient supramolecular ON/OFF fluorescence switch.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号