首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peptides and nucleic acids can self-assemble to give supramolecular structures that find application in different fields, ranging from the delivery of drugs to the obtainment of materials endowed with optical properties. Forces that stabilize the “suprastructures” typically are hydrogen bonds or aromatic interactions; in case of nucleic acids, Watson-Crick pairing drives self-assembly while, in case of peptides, backbone hydrogen bonds and interactions between aromatic side chains trigger the formation of structures, such as nanotubes or ribbons. Molecules containing both aromatic peptides and nucleic acids could in principle exploit different forces to self-assemble. In this work we meant to investigate the self-assembly of mixed systems, with the aim to understand which forces play a major role and determine formation/structure of aggregates. We therefore synthesized conjugates of the peptide FF to the peptide nucleic acid dimer “gc” and characterized their aggregates by different spectroscopic techniques, including NMR, CD and fluorescence.  相似文献   

2.
The controlled self-assembly of porphyrin derivatives (TCPP, tetrakis(4-carboxyphenyl)porphyrin) within Fmoc-protected (Fmoc=9-Fluorenylmethyloxycarbonyl) dipeptide (Fmoc-TL-NH2) nanofibers is demonstrated. The biocatalytic co-assembly in aqueous medium generated an energy transfer hydrogel. Depending on the concentrations of porphyrin used, the resulting nanofibrous gels show two distinct regions of self-assembly behavior that is, integration of TCPP into nanostructures to produce two-component co-assembly fibers, or heterogeneous self-aggregation of TCPP within the self-assembled matrix observed at higher concentrations. The mode of assembly directly impacts on the energy transfer efficiency of these nanostructures. These results show that reversible biocatalytic co-assembly of structural and functional components enables fine-tuning of peptide/porphyrin energy transfer nanostructures.  相似文献   

3.
Diphenylalanine (Phe‐Phe, FF) molecules, which can self‐assemble into highly ordered nano/microstructures, have increasingly aroused intense interests due to their special optical properties. In this review, recent advances in photoluminescence (PL) of supramolecular architectures of FF‐based peptide and the underlying mechanisms are highlighted. Mainly deep ultraviolet emission at around 285 nm and/or blue emission at ≈450 nm are observed in various FF peptide structures and its derivatives, which are primarily interpreted by quantum confinement effects, shallow radiative traps, and electron delocalization via hydrogen bonds in β‐ sheet structures. Furthermore, current applications of such fluorescent peptide nano/microstructures are also reviewed here, e.g., probing the number of water molecules confined in FF, temperature sensing, and visualization of deep ultraviolet beam. Yet, the PL mechanism is still under fierce debate and the application based on fluorescence is constantly under exploration. Thus, this review is endeavored to boost future explorations on the PL of the bioinspired FF peptide nano/microstructures.  相似文献   

4.
Studies carried out in recent decades have revealed that the ability to self-assemble is a widespread property among biomolecules. Small nucleic acid moieties or very short peptides are able to generate intricate assemblies endowed with remarkable structural and spectroscopic properties. Herein, the structural/spectroscopic characterization of aggregates formed by nucleobases and peptide nucleic acid (PNA)–peptide conjugates are reported. At high concentration, all studied nucleobases form aggregates characterized by previously unreported fluorescence properties. The conjugation of these bases, as PNA derivatives, to the dipeptide Phe–Phe leads to the formation of novel hybrid assemblies, which are characterized by an amyloid-like association of the monomers. Although these compounds share the same basic cross-β motif, the nature and number of PNA units have an important impact on both the level of structural order and the intrinsic fluorescence of the self-assembled nanostructure.  相似文献   

5.
Self-assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino-acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self-assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self-assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine-thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA “at” is replaced by guanine-cytosine dimer “gc”, disordered structures are observed. Spectroscopic characterization of the self-assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.  相似文献   

6.
The click reaction has found good utility across various fields due to the characteristics of high efficiency, atom economy, simple and mild reaction conditions. Click chemistry is usually utilized for connecting components of microscopic level, while it is still unable for joining macroscopic building blocks. Materials consisting of macroscopic building blocks realize the flexible fabrication of three-dimensional structures at macroscopic level, exerting significance on parallel manufactures. In this work, we reported macroscopic click chemistry utilizing hydrogel as macroscopic building blocks. Hydrogels G1 and G2 were prepared by incorporating M1 (N,N′-dimethyl-1,2-ethanediamine) and P1 (alkyne functionalized polyethylene glycol) respectively, where polymer chains formed through diffusion-induced amino-yne click reaction entangled different hydrogel networks together. Additionally, chain-like aggregates and complicated 3D structures such as tetrahedron and quadrangular pyramid were constructed based on the adhesion of the hydrogel blocks. The approach enables us to find more possibilities in the delicate designation of 3D aggregations as well as large-scale manufacturing.  相似文献   

7.
A glucose oxidase (GOx)‐mediated glucose metabolism was in vitro mimicked and employed to regulate the self‐assembly of peptide‐based building blocks. In this new stimuli‐responsive self‐assembly system, two peptide‐based building blocks, respectively, having aspartic acid (gelator 1 ) and lysine (gelator 2 ) residues were designed and prepared. When adding glucose and GOx to the aqueous solution of gelator 1 or the self‐assembled fibrillar hydrogel of gelator 2 to construct glucose metabolism system, the metabolic product (gluconic acid) can trigger the protonation of the peptide molecules and induce the phase transitions of gelators 1 (sol‐gel) and 2 (gel‐sol). Because this glucose metabolism regulated peptide self‐assembly is built on the oxidation of glucose, it can be used as a simple visual biosensor for glucose detection.  相似文献   

8.
Catalyst‐assisted self‐assembly is widespread in nature to achieve spatial control over structure formation. Reported herein is the formation of hydrogel micropatterns on catalytic surfaces. Gelator precursors react on catalytic sites to form building blocks which can self‐assemble into nanofibers. The resulting structures preferentially grow where the catalyst is present. Not only is a first level of organization, allowing the construction of hydrogel micropatterns, achieved but a second level of organization is observed among fibers. Indeed, fibers grow with their main axis perpendicular to the substrate. This feature is directly linked to a unique mechanism of fiber formation for a synthetic system. Building blocks are added to fibers in a confined space at the solid–liquid interface.  相似文献   

9.
This paper reports comprehensive studies on the mixed assembly of bis-(trialkoxybenzamide)-functionalized dialkoxynaphthalene (DAN) donors and naphthalene-diimide (NDI) acceptors due the cooperative effects of hydrogen bonding, charge-transfer (CT) interactions, and solvophobic effects. A series of DAN as well as NDI building blocks have been examined (wherein the relative distance between the two amide groups in a particular chromophore is the variable structural parameter) to understand the structure-dependent variation in mode of supramolecular assembly and morphology (organogel, reverse vesicle, etc.) of the self-assembled material. Interestingly, it was observed that when the amide functionalities are introduced to enhance the self-assembly propensity, the mode of co-assembly among the DAN and NDI chromophores no longer remained trivial and was dictated by a relatively stronger hydrogen-bonding interaction instead of a weak CT interaction. Consequently, in a highly non-polar solvent like methylcyclohexane (MCH), although kinetically controlled CT-gelation was initially noticed, within a few hours the system sacrificed the CT-interaction and switched over to the more stable self-sorted gel to maximize the gain in enthalpy from the hydrogen-bonding interaction. In contrast, in a relatively less non-polar solvent such as tetrachloroethylene (TCE), in which the strength of hydrogen bonding is inherently weak, the contribution of the CT interaction also had to be accounted for along with hydrogen bonding leading to a stable CT-state in the gel or solution phase. The stability and morphology of the CT complex and rate of supramolecular switching (from CT to segregated state) were found to be greatly influenced by subtle structural variation of the building blocks, solvent polarity, and the DAN/NDI ratio. For example, in a given D-A pair, by introducing just one methylene unit in the spacer segment of either of the building blocks a complete change in the mode of co-assembly (CT state or segregated state) and the morphology (1D fiber to 2D reverse vesicle) was observed. The role of solvent polarity, structural variation, and D/A ratio on the nature of co-assembly, morphology, and the unprecedented supramolecular-switching phenomenon have been studied by detail spectroscopic and microscopic experiments in a gel as well as in the solution state and are well supported by DFT calculations.  相似文献   

10.
Supramolecular induction of chirality to a π-stacked dialkoxynaphthalene (DAN)-fiber (made of achiral building blocks) from a neighbouring helical naphthalenediimide (NDI)-fiber is reported. CD-studies helped in understanding the nature of co-assembly in the donor-acceptor chromophore mixture from molecular to macroscopic scale.  相似文献   

11.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π-conjugated carboxylic acids in pure aqueous solution. Under what we have termed an "interaction-substitution" mechanism, we generated chiral homoaggregates of a variety of π-conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton-coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π-conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen-bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen-bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this "interaction-substitution" procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

12.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π‐conjugated carboxylic acids in pure aqueous solution. Under what we have termed an “interaction–substitution” mechanism, we generated chiral homoaggregates of a variety of π‐conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton‐coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π‐conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen‐bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen‐bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this “interaction–substitution” procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

13.
A novel method for the control of peptide self-assembly has been developed by using synthetic triblock-type beta-sheet peptides composed of l- or d-amino acid, 1L and 1D, as building blocks. The peptides 1L and 1D self-assemble into beta-sheet nanofibers with left- and right-handed twists, respectively, under appropriate condition. On the other hand, the 1L/1D binary mixture was found to form only globular aggregates at the same condition. Thus, amyloid-like nanofiber formation and its nanostructure could be successfully regulated by the stereospecificity of the constituent peptide species.  相似文献   

14.
It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO2) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO2-triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO2 bubble-induced vortex during the co-assembly process.  相似文献   

15.
To overcome the limitations of molecular assemblies, the development of novel supramolecular building blocks and self‐assembly modes is essential to create more sophisticated, complex, and controllable aggregates. The self‐assembly of peptide–DNA conjugates (PDCs), in which two orthogonal self‐assembly modes, that is, β‐sheet formation and Watson–Crick base pairing, are covalently combined in one supramolecular system, is reported. Despite extensive research, most self‐assembly studies have focused on using only one type of building block, which restricts structural and functional diversity compared to multicomponent systems. Multicomponent systems, however, suffer from poor control of self‐assembly behaviors. Covalently conjugated PDC building blocks are shown to assemble into well‐defined and controllable nanostructures. This controllability likely results from the decrease in entropy associated with the restriction of the molecular degrees of freedom by the covalent constraints. Using this strategy, the possibility to thermodynamically program nano‐assemblies to exert gene regulation activity with low cytotoxicity is demonstrated.  相似文献   

16.
The self-assembly of molecules into desired architectures is currently a challenging subject for the development of supramolecular chemistry. Here we present a facile "breath figure" assembly process through the use of the self-assembled peptide building block diphenylalanine (L-Phe-L-Phe, FF). Macroporous honeycomb scaffolds were fabricated, and average pore size could be regulated, from (1.00±0.18) μm to (2.12±0.47) μm, through the use of different air speeds. It is indicated that the honeycomb formation is humidity-, solvent-, concentration-, and substrate-dependent. Moreover, water molecules introduced from "breath figure" intervene in the formation of hydrogen bonds during FF molecular self-assembly, which results in a hydrogen bond configuration transition from antiparallel β sheet to parallel β sheet. Meanwhile, as a result of the higher polarity of water molecules, the FF molecular array is transformed from laminar stacking into a hexagonal structure. These findings not only elucidate the FF molecule self-assembly process, but also strongly support the mechanism of breath figure array formation. Finally, human embryo skin fibroblast (ESF) culture experiments suggest that FF honeycomb scaffolds are an attractive biomaterial for growth of adherent cells with great potential applications in tissue engineering.  相似文献   

17.
Peptides and polymers are the “elite” building blocks in hydrogel fabrication where the typical approach consists of coupling specific peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains aiming to obtain controlled cell responses (adhesion, migration, differentiation). However, the use of polymers and peptides as structural components for fabricating supramolecular hydrogels is less well established. Here, the literature on the design of peptide/polymer systems for self‐assembly into hybrid hydrogels, as either peptide‐polymer conjugates or combining both components individually, is reviewed. The properties (stiffness, mesh structure, responsiveness, and biocompatibility) of the hydrogels are then discussed from the viewpoint of their potential biomedical applications.  相似文献   

18.
The bis(pyrene)-Lys-Leu-Val-Phe-Phe-Gly-poly ethylene glycol (BP-KLVFFG-PEG) based nanoparticles capture Aβ42 by recognition and co-assembly, the length of PEG chain in which leads to different morphologies of coassemblies and capture efficiency. The co-assembly strategy shows a decrease of cytotoxicity, potentially for Alzheimer's disease treatment.  相似文献   

19.
The peptide di‐l ‐phenylalanine (FF) has emerged as a highly potent candidate for the development of novel nanomaterials. The unprotected peptide was dissolved in 1,1,1,3,3,3‐hexafluoropropan‐2‐ol (HFIP) mixed with tetrahydrofuran (THF) and single crystals of the THF monosolvate, C18H20N2O3·C4H8O, were grown by slow evaporation in a `vial‐in‐closed‐bottle' system. THF is a molecule that can only act as a hydrogen‐bond acceptor. Thus, the hydrogen‐bond patterns observed in the crystal structures at 100 and 299 K are different compared to that of crystals grown from water and methanol [Mason et al. (2014). ACS Nano. 8 , 1243–1253].  相似文献   

20.
Spatial control over the self‐assembly of synthetic molecular fibers through the use of light‐switchable catalysts can lead to the controlled formation of micropatterns made up of hydrogel structures. A photochromic switch, capable of reversibly releasing a proton upon irradiation, can act as a catalyst for in situ chemical bond formation between otherwise soluble building blocks, thereby leading to fiber formation and gelation in water. The use of a photoswitchable catalyst allows control over the distribution as well as the mechanical properties of the hydrogel material. By using homemade photomasks, spatially structured hydrogels were formed starting from bulk solutions of small molecule gelator precursors through light‐triggered local catalyst activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号