首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed‐cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA‐MA mixed‐cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI‐MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI‐MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI‐MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed‐cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high‐performance hybrid lead halide perovskites.  相似文献   

2.
Here, we investigate in detail the impact of the size of the methylammonium iodide (MAI) reactants in the mechanochemical powder synthesis of the halide perovskite methylammonium lead iodide (MAPbI3). Morphology and structural characterizations by scanning electron microscopy and X-ray diffraction reveal that with increasing MAI reactant size, the particle size of the perovskite powder increases, while its defect density decreases, as suggested by nuclear quadrupole resonance spectroscopy and photoluminescence investigations. The reason for this behavior seems to be associated to the sensitive influence of the MAI size on the time durations of MAPbI3 synthesis and delayed MAPbI3 crushing stage during ball milling. Thus, our results emphasize the high importance the reactant properties have on the mechanochemical synthesis of halide perovskites and will contribute to enhance the reproducibility and control of the fabrication of halide perovskites in powder form.  相似文献   

3.
A top‐down method is demonstrated for the fabrication of CH3NH3PbBr3 and CH3NH3PbI3 perovskite nanocrystals, employing a mixture of ligands oleic acid and oleylamine as coordinating solvents. This approach avoids the use of any polar solvents, skips multiple reaction steps by employing a simple ultrasonic treatment of the perovskite precursors, and yields rather monodisperse blue‐, green‐, and red‐emitting methylammonium lead halide nanocrystals with a high photoluminescence quantum yield (up to 72 % for the green‐emitting nanocrystals) and remarkably improved stability. After discussing all relevant reaction parameters, the green‐emitting CH3NH3PbBr3 nanocrystals are employed as a component of down‐conversion white‐light‐emitting devices.  相似文献   

4.
Although alkylammonium ionic liquids (ILs) such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase "solvents" for liquid chromatography (LC), we have shown that the IL methylammonium formate (MAF), in part because of its lower viscosity as compared to other ILs, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation is possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important, permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer at the 5% level for LC with mass spectrometry detection of water-soluble vitamins is also shown.  相似文献   

5.
We demonstrate that an ordered 2D perovskite can significantly boost the photoelectric performance of 2D/3D perovskite heterostructures. Using selective fluorination of phenyl-ethyl ammonium (PEA) lead iodide to passivate 3D FA0.8Cs0.2PbI3, we find that the 2D/3D perovskite heterostructures passivated by a higher ordered 2D perovskite have lower Urbach energy, yielding a remarkable increase in photoluminescence (PL) intensity, PL lifetime, charge-carrier mobilities (ϕμ), and carrier diffusion length (LD) for a certain 2D perovskite content. High performance with an ultralong PL lifetime of ≈1.3 μs, high ϕμ of ≈18.56 cm2 V−1 s−1, and long LD of ≈7.85 μm is achieved in the 2D/3D films when passivated by 16.67 % para-fluoro-PEA2PbI4. This carrier diffusion length is comparable to that of some perovskite single crystals (>5 μm). These findings provide key missing information on how the organic cations of 2D perovskites influence the performance of 2D/3D perovskite heterostructures.  相似文献   

6.
《Mendeleev Communications》2022,32(4):495-497
We report the radioluminescent properties of the recently discovered hybrid bromocuprate (MeNH3)2CuBr3 in a poly(methyl methacrylate) matrix in the form of solution- produced composite thick films. The obtained films demonstrate bright turquoise photoluminescence in UV light and intense radioluminescence due to CuKα and AgKα radiation at room temperature, exceeding the radioluminescence intensity of Cs4PbBr6@CsPbBr3 films by more than an order of magnitude.  相似文献   

7.
Despite the remarkable progress in perovskite solar cells (PSCs), their instability and rapid degradation over time still restrict their commercialization. A 2D capping layer has been proved to overcome the stability issues; however, an in-depth understanding of the complex degradation processes over a prolonged time at PSC interfaces is crucial for improving their stability. In the current work, we investigated the stability of a triple cation 3D ([(FA0.83MA0.17)Cs0.05]Pb(I0.83Br0.17)3) and 2D/3D PSC fabricated by a layer-by-layer deposition technique (PEAI-based 2D layer over triple cation 3D perovskite) using a state-of-art characterization technique: electrochemical impedance spectroscopy (EIS). A long-term stability test over 24 months was performed on the 3D and 2D/3D PSCs with an initial PCE of 18.87% and 20.21%, respectively, to suggest a more practical scenario. The current-voltage (J-V) and EIS results showed degradation in both the solar cell types; however, a slower degradation rate was observed in 2D/3D PSCs. Finally, the quantitative analysis of the key EIS parameters affected by the degradation in 3D and 2D/3D PSCs were discussed.  相似文献   

8.
Two-dimensional (2D) lead-free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in-depth understanding on their shape-controlled charge-carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single-particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution-based method. We applied fluorescence microscopy and super-resolution optical imaging at single-particle level to investigate their morphology-dependent PL properties. Narrow emission line widths and passivation of non-radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super-resolution optical image of the NS from localization-based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

9.
3D perovskite CsPbBr3 has recently taken a blooming position for optoelectronic applications. However, due to the lack of natural anisotropy of optical attributes, it is a great challenge to fulfil polarization-sensitive photodetection. Here, for the first time, we exploited dimensionality reduction of CsPbBr3 to tailor a 2D-multilayered hybrid perovskite, (TRA)2CsPb2Br7 ( 1 , in which TRA is (carboxy)cyclohexylmethylammonium), serving as a potential polarized-light detecting candidate. Its unique quantum-confined 2D structure results in intrinsic anisotropy of electrical conductivity, optical absorbance, and polarization-dependent responses. Particularly, it exhibits remarkable dichroism with the photocurrent ratio (Ipc/Ipa) of ≈2.1, being much higher than that of the isotropic CsPbBr3 crystal and reported CH3NH3PbI3 nanowire (≈1.3), which reveals its great potentials for polarization-sensitive photodetection. Further, crystal-based detectors of 1 show fascinating responses to the polarized light, including high detectivity (>1010 Jones), fast responding time (≈300 μs), and sizeable on/off current ratios (>104). To our best knowledge, this is the first study on 2D Cs-based hybrid perovskite exhibiting strong polarization-sensitivity. The work highlights an effective pathway to explore new polarization sensitive candidates for hybrid perovskites and promotes their future electronic applications.  相似文献   

10.
Tin halide perovskites are potential alternatives of lead halide perovskites. However, the easy oxidation of Sn2+ to Sn4+ brings in a challenge. Recently, layered two-dimensional hybrid tin halide perovskites have been shown to partially resist the oxidation process because of the presence of hydrophobic organic molecules. Consequently, such layered hybrid perovskites are being explored for optoelectronic applications. The optical properties of layered tin halide perovskites depend on the interlayer separation and the dielectric mismatch between the organic and inorganic layers. Intercalation (insertion) of a molecular species between the layers modifies the interlayer interactions affecting the optical properties of layered hybrid perovskites. We investigated the effect of hexafluorobenzene (HFB) intercalation in phenethylammonium tin iodide [(PEA)2SnI4] using temperature-dependent (6 K to 300 K) photoluminescence (PL). HFB intercalation increases the bandgap. A strong PL quenching is observed in pristine (PEA)2SnI4 below 150 K, probably because of the presence of non-emissive states. HFB intercalation suppresses the influence of such non-emissive states resulting in an increase in PL intensity at the cryogenic temperatures. Our results highlight that a simple molecular intercalation (non-covalent interaction) into layered hybrid perovskites can significantly tailor the electronic and optical properties.  相似文献   

11.
12.
13.
High‐quality phase‐pure MA1?xFAxPbI3 planar films (MA=methylammonium, FA=formamidinium) with extended absorption and enhanced thermal stability are difficult to deposit by regular simple solution chemistry approaches owing to crystallization competition between the easy‐to‐crystallize but unwanted δ‐FAPbI3/MAPbI3 and FAxMA1?xPbI3 requiring rigid crystallization conditions. Here A 2D–3D conversion to transform compact 2D mixed composition HMA1?xFAxPbI3Cl perovskite precursor films into 3D MA1?xFAxPbI3 (x=0.1–0.9) perovskites is presented. The designed Cl/I and H/FA(MA) ion exchange reaction induced fast transformation of compact 2D perovskite film, helping to form the phase‐pure and high quality MA1?xFAxPbI3 without δ‐FAPbI3 and MAPbI3 impurity. In all, we successfully developed a facile one‐step method to fabricate high quality phase‐pure MA1?xFAxPbI3 (x=0.1–0.9) perovskite films by 2D–3D conversion of HMA1?xFAxPbI3Cl perovskite. This 2D–3D conversion is a promising strategy for lead halide perovskite fabrication.  相似文献   

14.
Two‐dimensional (2D) lead‐free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in‐depth understanding on their shape‐controlled charge‐carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single‐particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution‐based method. We applied fluorescence microscopy and super‐resolution optical imaging at single‐particle level to investigate their morphology‐dependent PL properties. Narrow emission line widths and passivation of non‐radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super‐resolution optical image of the NS from localization‐based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

15.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   

16.
The spontaneously formed uncoordinated Pb2+ defects usually make the perovskite films demonstrate strong n-type with relatively lower carrier diffusion length and serious non-radiative recombination energy loss. In this work, we adopt different polymerization strategies to construct three-dimensional passivation frameworks in the perovskite layer. Thanks to the strong C≡N⋅⋅⋅Pb coordination bonding and the penetrating passivation structure, the defect state density is obviously reduced, accompanied by a significant increase in the carrier diffusion length. Additionally, the reduction of iodine vacancies also changed the Fermi level of the perovskite layer from strong n-type to weak n-type, which substantially promotes the energy level alignment and carrier injection efficiency. As a result, the optimized device achieved an efficiency exceeded 24 % (the certified efficiency is 24.16 %) with a high open-circuit voltage of 1.194 V, and the corresponding module achieved an efficiency of 21.55 %.  相似文献   

17.
通过水热前驱体中的功能添加剂调控一维(1D)纳米棒阵列疏密度,继而在纳米棒间隙沉积零维(0D)纳米颗粒,制备1D/0D有序的复合SnO2电子传输层(ETL),并组装高效、稳定的钙钛矿太阳能电池。系统研究前驱体中NaCl添加剂以及后续纳米颗粒的沉积对复合ETL的形貌结构、光谱性能及界面电荷过程的作用规律,探讨上述作用对电池光电性能的影响机制。前驱体中NaCl的加入使棒密度变小,从而使0D纳米颗粒顺利渗透到1D纳米棒间隙中,其对钙钛矿/ETL和钙钛矿/FTO界面复合的抑制作用是造成器件开路电压和填充因子增大的原因。在经2 mL饱和NaCl水溶液改性的1D电子传输层ETL-2Cl的基础上,继续沉积0D的纳米颗粒,制备得到新型1D/0D复合电子传输层ETL-2P,后者优良的电荷复合抑制作用(复合电阻是ETL-2Cl的2.9倍)和高效的电子抽提性能(抽提速率3.03×10^7 s^-1,抽提效率91.6%)促成了电池较优的光电性能(光电效率12.15%)。  相似文献   

18.
The multifunctional two-dimensional (2D) organic-inorganic hybrid perovskites have potential applications in many fields, such as, semiconductor, energy storage and fluorescent device etc. Here, a 2D Ruddlesden-Popper (RP) perovskite (IPA)2(FA)Pb2I7 ( 1 , IPA+=C3H9NI+, FA+=CN2H5+) is determined for its photophysical properties. Strikingly, 1 reveals a solid reversible phase transition with Tc of 382 K accompanied by giant entropy change of 40 J mol−1 K−1. Further optical investigations indicate that 1 reveals a narrow direct bandgap (2.024 eV) attributed to the slight bending of I−Pb-I edge and inorganic [Pb2I7]n layer and a superior photoluminescence (PL) emission with super long lifetime of 0.1607 ms. It is believed that this work will pave an avenue to further design multifunctional semiconductors that combines energy storage and photoelectric materials.  相似文献   

19.
Two coordination polymers, namely [Cd(HL)2]n · nH2O ( 1 ) and [Zn(L)]n ( 2 ) (H2L = benzimidazole‐2‐butanoic acid), were prepared by solvothermal reaction of Cd(NO3)2 or Zn(NO3)2 and H2L. The structures of these two compounds were determined by the single‐crystal X‐ray diffraction analyses and further characterized by IR spectroscopy, elemental analyses, powder X‐ray diffraction analyses, and thermal analyses. Compound 1 is a two‐dimensional (2D) layer framework, which is further packed into a 3D supramolecular framework by intermolecular hydrogen bonds, whereas compound 2 is a three‐dimensional (3D) framework with 3‐connected etb topology. The H2L ligand in compounds 1 and 2 displays two different anionic forms (HL and L2–), which then adopt two different coordination modes. Moreover, thermal stabilities and luminescent properties of these two compounds were also investigated.  相似文献   

20.
1-methyl-2-pyrrolidone (1m2p) is a solvent with proven abilities for 2D-solid exfoliation due to its extremely high surface tension. In principle, such a feature could be used also to induce the selective breaking of certain bonds in solids to obtain new materials. Such a hypothesis is demonstrated in this study for transition metal nitroprussides, where 2D solids are obtained from 3D frameworks by selective rupture of axial bonds. This contribution discusses the mechanism involved in such molecular manufacture. The crystal structure for the formed 2D solids was solved and refined from XRD powder patterns recorded using synchrotron radiation. Mössbauer, IR and Raman spectra provided fine details on the electronic structure of the resulting new series of layered materials. The experimental information was complemented with calculations for the molecule configuration in its non-activated and activated forms. In the obtained 2D solids, neighboring layers of about 1 nm of thickness remain separated by activated 1m2p molecules. The interaction between neighboring layers is of a physical nature, without the presence of a chemical bond between them, as corresponds to a 2D material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号