首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Simple, sensitive, and selective detection of specific biopolymers is critical in a broad range of biomedical and technological areas. We present a design of turn‐on near‐infrared (NIR) fluorescent probes with intrinsically high signal‐to‐background ratio. The fluorescent signal generation mechanism is based on the aggregation/de‐aggregation of phthalocyanine chromophores controlled by selective binding of small‐molecule “anchor” groups to a specific binding site of a target biopolymer. As a proof‐of‐concept, we demonstrate a design of a sensor for EGFR tyrosine kinase—an important target in cancer research. The universality of the fluorescent signal generation mechanism, as well as the dependence of the response selectivity on the choice of the small‐molecule “anchor” group, make it possible to use this approach to design reliable turn‐on NIR fluorescent sensors for detecting specific protein targets present in the low‐nanomolar concentration range.  相似文献   

2.
Hydrophobic fluorescence:Tan and his colleagues recently introduced a brand new chemotype of environment-sensitive fluorescent turn-on probes to detect the hydrophobic ligand-binding domain by using SBD fluorophore.The design strategy described in this report generalized the environment sensitivity turn-on mechanism to recognize a specific protein,which provides a robust breakthrough for interchanging fluorescence in conventional small-molecule fluorescent imaging.  相似文献   

3.
Chiral molecular recognition of DNA is important for rational drug design and for developing structural probes of DNA conformation. Developing a convenient and inexpensive assay for sensitive and selective identification of DNA‐specific binding compounds with rapid, easy manipulation is in ever‐increasing demand. Here, we present a “turn‐on” and label‐free electrochemiluminescent (ECL) biosensor for distinguishing chiral metallosupramolecular complexes based on DNA three‐way junction formation selectively induced by the analyte. The fabricated ECL sensor shows excellent performance in the chiral discrimination of two enantiomers with an enantioselective recognition ratio of up to 4.4. More importantly, as a “turn‐on” detection system, the ECL chiral sensor does not suffer from false positives and limited signal range of “signal‐off” systems. Therefore, this concept may provide a new insight into the design of efficient sensors for distinguishing chiral molecules and for investigating the interactions between DNA and small molecules.  相似文献   

4.
Arrayed complexes of a water-soluble deep cavitand and two fluorescent indicators show selective sensing of anabolic-androgenic steroids in aqueous environments. By combining the host–guest complexes with small amounts of heavy metal ions, discrimination between steroids that vary in structure by only a single π bond is possible. The sensing occurs through a triggered aggregation mechanism, which can be mediated by both the presence of metal ions and the steroids. The use of both “turn-on” and “turn-off” fluorophores is essential for good discrimination. As low as 10 μm steroid can be detected, and the discrimination is selective in steroid samples spiked into human urine.  相似文献   

5.
The detection of acetylcholinesterase (AChE) activity is of great significance for studying the physiological functions of AChE and clinical diagnosis of pesticide poisoning. Herein, a small-molecule fluorescent probe BDFA was rationally designed and readily synthesized via a one-step reaction, which enables qualitative and quantitative detection of AChE. BDFA emits a slight fluorescence in an aqueous medium, while the fluorescence is significantly enhanced under the catalysis of AChE. Mechanism studies reveal that BDFA eliminates the N, N-dimethyl carbamate protective group in the presence of AChE and then spontaneously undergoes intramolecular cyclization conversion to generate an intense fluorescent product. Based on the above mechanism, BDFA exhibits a sensitive, selective, rapid and stable “turn-on” fluorescence response to AChE, without interference from pH, ions, thiols, amino acids and other enzymes. The fluorescence intensity of BDFA at 525 nm has a linear relationship with the AChE concentration in the range of 0.0045–1.0 U/mL, and the detection limit is 4.5 mU/mL. Moreover, BDFA is suitable for rapidly diagnosing AChE activity in blood samples, thus providing an efficient and convenient tool for diagnosing organophosphorus and carbamate pesticide poisoning. Compared with the reported AChE fluorescent probes, BDFA exhibits apparent advantages including simple synthesis, low detection limit and fast response speed.  相似文献   

6.
Engineered miniprotein host–small-molecule guest pairs could be utilized to design new processes within cells as well as investigate fundamental aspects of cell signaling mechanisms. However, the development of host–guest pairs capable of functioning in living systems has proven challenging. Moreover, few examples of host–guest pairs with stoichiometries other than 2:1 exist, significantly hindering the ability to study the influence of oligomerization state on signaling fidelity. Herein, we present an approach to identify host–guest systems for relatively small green fluorescent guests by incorporation into cyclic peptides. The optimal host–guest pair produced a 10-fold increase in green fluorescence signal upon binding. Biophysical characterization clearly demonstrated higher order supramolecular assembly, which could be visualized on the surface of living yeast cells using a turn-on fluorescence readout. This work further defines evolutionary design principles to afford host–guest pairs with stoichiometries other than 2:1 and enables the identification of spectrally orthogonal host–guest pairs.  相似文献   

7.
A selective and sensitive turn-on fluorescent NIR probe for cysteine has been developed. Cleavage of 2,4-dinitrobenzenesulfonyl (DNBS) with thiols switches the weakly fluorescent aza-BODIPY dye (λ(em) = 734 nm, Φ(f) = 0.03) to a strongly fluorescent species in the NIR region (λ(em) = 755 nm, Φ(f) = 0.14).  相似文献   

8.
(19)F NMR/MRI probe is expected to be a powerful tool for selective sensing of biologically active agents owing to its high sensitivity and no background signals in live bodies. We have recently reported a unique supramolecular strategy for specific protein detection using a protein ligand-tethered self-assembling (19)F probe. This method is based on a recognition-driven disassembly of the nanoprobes, which induced a clear turn-on signal of (19)F NMR/MRI. In the present study, we conducted a systematic investigation of the relationship between structure and properties of the probe to elucidate the mechanism of this turn-on (19)F NMR sensing in detail. Newly synthesized (19)F probes showed three distinct behaviors in response to the target protein: off/on, always-on, and always-off modes. We clearly demonstrated that these differences in protein response could be explained by differences in the stability of the probe aggregates and that "moderate stability" of the aggregates produced an ideal turn-on response in protein detection. We also successfully controlled the aggregate stability by changing the hydrophobicity/hydrophilicity balance of the probes. The detailed understanding of the detection mechanism allowed us to rationally design a turn-on (19)F NMR probe with improved sensitivity, giving a higher image intensity for the target protein in (19)F MRI.  相似文献   

9.
Visualization of tumor-specific protein biomarkers on cell membranes has the potential to contribute greatly to basic biological research and therapeutic applications. We recently reported a unique supramolecular strategy for specific protein detection using self-assembling fluorescent nanoprobes consisting of a hydrophilic protein ligand and a hydrophobic BODIPY fluorophore in test tube settings. This method is based on recognition-driven disassembly of the nanoprobes, which induces a clear turn-on fluorescent signal. In the present study, we have successfully extended the range of applicable fluorophores to the more hydrophilic ones such as fluorescein or rhodamine by introducing a hydrophobic module near the fluorophore. Increasing the range of available fluorophores allowed selective imaging of membrane-bound proteins under live cell conditions. That is, overexpressed folate receptor (FR) or hypoxia-inducible membrane-bound carbonic anhydrases (CA) on live cell surfaces as cancer-specific biomarkers were fluorescently visualized using the designed supramolecular nanoprobes in the turn-on manner. Moreover, a cell-based inhibitor-assay platform for CA on a live cell surface was constructed, highlighting the potential applicability of the self-assembling turn-on probes.  相似文献   

10.
We have developed a highly sensitive and selective colorimetric method for detection of acetylcholine (ACh), using a tandem enzymatic reaction for biological target recognition and silver nanoplates (AgNPLs) for optical signal generation. The ACh molecules are enzymatically hydrolyzed and oxidized into betaine and hydrogen peroxide, the latter of which chemically oxidizes the AgNPLs to generate the “turn-on” signal. To optimize detection sensitivity, the chemical and biological properties of the detection mixtures containing the enzymes, ACh, and AgNPLs were thoroughly investigated with respect to component concentrations and reaction temperatures; a maximum sensitivity of 500 nM for colorimetric detection of ACh was achieved. We further directly compared the signaling profiles of (1) novel nanostructured and (2) conventional molecular chromogens, improving our understanding of the factors that should be considered when designing a detection system.  相似文献   

11.
Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for imaging biomolecules in living systems. However, NIR fluorescent sensors are very challenging to be developed. Herein, we describe the discovery of a new class of NIR fluorescent dyes represented by 1a/1c/1e, which are superior to the traditional 7-hydroxycoumarin and fluorescein with both absorption and emission in the NIR region while retaining an optically tunable hydroxyl group. Quantum chemical calculations with the B3LYP exchange functional employing 6-31G(d) basis sets provide insights into the optical property distinctions between 1a/1c/1e and their alkoxy derivatives. The unique optical properties of the new type of fluorescent dyes can be exploited as a useful strategy for development of NIR fluorescent sensors. Employing this strategy, two different types of NIR fluorescent sensors, NIR-H(2)O(2) and NIR-thiol, for H(2)O(2) and thiols, respectively, were constructed. These novel sensors respond to H(2)O(2) or thiols with a large turn-on NIR fluorescence signal upon excitation in the NIR region. Furthermore, NIR-H(2)O(2) and NIR-thiol are capable of imaging endogenously produced H(2)O(2) and thiols, respectively, not only in living cells but also in living mice, demonstrating the value of the new NIR fluorescent sensor design strategy. The new type of NIR dyes presented herein may open up new opportunities for the development of NIR fluorescent sensors based on the hydroxyl functionalized reactive sites for biological imaging applications in living animals.  相似文献   

12.
《中国化学快报》2021,32(12):3876-3881
Selective detection of multiple analytes in a compact design with dual-modality and theranostic features presents great challenges. Herein, we wish to report a coumarin-thiazolidine masked d-penicillamine based dual-modality fluorescent probe COU-DPA-1 for selective detection, differentiation, and detoxification of multiple heavy metal ions (Ag+, Hg2+, Cu2+). The probe shows divergent fluorescence (FL) /circular dichroism (CD) responses via divergent bond-cleavage cascade reactions (metal ion promoted C-S cleavage and hydrolysis at two distinctive cleavage sites): FL “turn-off” and CD “turn-on” for Ag+ (no hydrolysis), FL “turn-on” and CD “turn-off” for Hg2+ (imine hydrolysis), and FL “self-threshold ratiometric” and CD “turn-off” for excess Cu2+ (lactone and imine hydrolysis), providing the first example of a fluorescence/CD dual-modality probe for multiple species with complimentary responses. Moreover, the bond-cleavage cascade reactions also lead to the formation of d-penicillamine heavy metal ion complexes for potential detoxification treatments.  相似文献   

13.
Near infrared (NIR) emitting semiconductor quantum dots can be excellent fluorescent nanoprobes, but the poor biodegradability and potential toxicity limits their application. The authors describe a fluorescent system composed of graphene quantum dots (GQDs) as NIR emitters, and novel MnO2 nanoflowers as the fluorescence quenchers. The system is shown to be an activatable and biodegradable fluorescent nanoprobe for the “turn-on” detection of intracellular glutathione (GSH). The MnO2-GQDs nanoprobe is obtained by adsorbing GQDs onto the surface of MnO2 nanoflowers through electrostatic interaction. This results in the quenching of the NIR fluorescence of the GQDs. In the presence of GSH, the MnO2-GQDs nanoprobe is degraded and releases Mn2+ and free GQDs, respectively. This gives rise to increased fluorescence. The nanoprobe displays high sensitivity to GSH and with a 2.8 μM detection limit. It integrates the advantages of NIR fluorescence and biodegradability, selectivity, biocompatibility and membrane permeability. All this makes it a promising fluorescent nanoprobe for GSH and for cellular imaging of GSH as shown here for the case of MCF-7 cancer cells.
Graphical abstract A biodegradable NIR fluorescence nanoprobe (MnO2-GQDs) for the “turn-on” detection of GSH in living cell was established, with the NIR GQD as the fluorescence reporter and the MnO2 nanoflower as the fluorescence quencher.
  相似文献   

14.
A near-infrared fluorescence turn-on sensor for sulfide anions   总被引:1,自引:0,他引:1  
Cao X  Lin W  He L 《Organic letters》2011,13(17):4716-4719
The first NIR fluorescent sensor for sulfide anions was constructed based on the displacement approach. The sensing ensemble is composed of a cyanine dye, a piperazine linker, an 8-aminoquinoline ligand, and copper. The favorable attributes of the sensor include a large NIR fluorescence turn-on signal in aqueous ethanol, high sensitivity, and high selectivity. The transition-metal-based displacement strategy may open an avenue for development of NIR fluorescent sensors for a wide variety of anion targets.  相似文献   

15.
《中国化学快报》2019,30(9):1627-1630
With d-proline as the reducing and capping agent, fluorescent gold nanoclusters were rapidly prepared (d-Pro@AuNCs) within 10 min at 100 °C. In the present of gold nanoparticles, the fluorescence of d-Pro@AuNCs was remarkably quenched. Interestingly, based on the electrostatic interaction between anticancer drug Raltitrexed and gold nanoparticles induced fluorescence “turn-on” principle, a high selective assay for detection of Raltitrexed was established with the probe associating the fluorescence emission at 435 nm. The fluorescence intensity of d-Pro@AuNCs linearly correlated with the concentration of Raltitrexed in the range from 5.0 μmol/L to 40.0 μmol/L (R2 = 0.999) and the limit of detection was 1.9 μmol/L. Further, after Raltitrexed was abdominal injected in rats, a metabolic approach was constructed with the prepared fluorescent probe. It showed great potential of AuNCs-based sensing probes for application in analysis of serum anticancer drugs.  相似文献   

16.
meso-Carboxyl-BODIPY responds to small electronic changes resulting from acyl substitution reactions with a marked change in fluorescence. Herein, the minute changes that accompany the thioester to amide conversion encountered in native chemical ligation (NCL) are exploited in the construction of fluorescent “turn-on” probes. Two fluorogenic probes, 1 a and 4 , derived from a meso-thioester-BODIPY scaffold, were designed for the selective detection of cysteine ( 1 a ) and aminopeptidase N ( 4 ), respectively. The aromatic ( 1 a ) and aliphatic ( 4 ) thioesters of meso-carboxyl-BODIPY are nonfluorescent. However, specific analyte-induced conversion to the meso-amide derivative caused significant spectral changes and a dramatic fluorescence enhancement. Probe 1 a exhibited a large fluorescence “turn-on” response with high selectivity toward cysteine via a tandem NCL reaction. Probe 4 was successfully applied to the monitoring and imaging of endogenous aminopeptidase N in live cancer cells.  相似文献   

17.
18.
Uracil DNA glycosylase (UNG) is an important DNA repair enzyme that recognizes and excises uracil bases in DNA using an extrahelical recognition mechanism. It is emerging as a desirable target for small-molecule inhibitors given its key role in a wide range of biological processes including the generation of antibody diversity, DNA replication in a number of viruses, and the formation of DNA strand breaks during anticancer drug therapy. To accelerate the discovery of inhibitors of UNG we have developed a uracil-directed ligand tethering strategy. In this efficient approach, a uracil aldehyde ligand is tethered via alkyloxyamine linker chemistry to a diverse array of aldehyde binding elements. Thus, the mechanism of extrahelical recognition of the uracil ligand is exploited to target the UNG active site, and alkyloxyamine linker tethering is used to randomly explore peripheral binding pockets. Since no compound purification is required, this approach rapidly identified the first small-molecule inhibitors of human UNG with micromolar to submicromolar binding affinities. In a surprising result, these uracil-based ligands are found not only to bind to the active site but also to bind to a second uncompetitive site. The weaker uncompetitive site suggests the existence of a transient binding site for uracil during the multistep extrahelical recognition mechanism. This very general inhibitor design strategy can be easily adapted to target other enzymes that recognize nucleobases, including other DNA repair enzymes that recognize other types of extrahelical DNA bases.  相似文献   

19.
《化学:亚洲杂志》2017,12(16):2008-2028
T he use of nonfluorescent azo dyes as dark quenchers in activatable optical bioprobes based on the Förster resonance energy transfer (FRET) mechanism and designed to target a wide range of enzymes has been established for over two decades. The key value of the azo moiety (−N=N−) to act as an efficient “ON–OFF” switch of fluorescence once introduced within the core structure of conventional organic‐based fluorophores (mainly fluorescent aniline derivatives) has recently been exploited in the development of alternative reaction‐based small‐molecule probes based on the “profluorescence” concept. These unprecedented “azobenzene‐caged” fluorophores are valuable tools for the detection of a wide range of reactive (bio)analytes. This review highlights the most recent and relevant advances made in the design and biosensing/bioimaging applications of azo‐based fluorogenic probes. Emphasis is also placed on relevant achievements in the synthesis of bioconjugatable/biocompatible azo dyes used as starting building blocks in the rational and rapid construction of these fluorescent chemodosimeters. Finally, a brief glimpse of possible future biomedical applications (theranostics) of these “smart” azobenzene‐based molecular systems is presented.  相似文献   

20.
A novel fluorescent chemosensor HACBA with carbazole-hemicyanine fluorophore as signal reporter and N,N,N'-tri(2-pyridylmethyl)ethylenediamine (TPEA) as binding sites was designed and synthesized. Its assemblies with anionic surfactant sodium dodecyl sulfate (SDS) show improved fluorescence emission stability and enhanced fluorescence intensity. HACBA/SDS system can selectively recognize Cu2+, which led to a dramatic fluorescence quenching. The in situ resultant HACBA-Cu(II)/SDS ensemble functioned as a highly selective and sensitive sensor for H2S with a turn-on fluorescent response. Our results show that the “on-off-on” molecular switch occured through the reversible formation-dissociation reaction between HACBA-Cu(II) complex and HACBA/CuS in the SDS micellar solution, and at least 3 cycles of on-off-on switches were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号