首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Covalent organic framework(COF) is a porous crystalline material with a well-controlled structure and a wide range of potential applications. However, the construction of new COF faces huge challenges, including the design and synthesis of structural unit monomers, the choice of reaction solvent system, and the study of reaction time and temperature. So, it’s particularly important to widen the application scope of synthetic methods and further promote the development of COFs. Here, we performed structural transformations in a three-dimensional(3D) COF(COF-300), and Fourier transform infrared spectroscopy(FTIR), power X-ray diffraction analysis(PXRD) and nitrogen adsorption isotherms confirmed the chemical principles and the successful realization of these exchanges. At the same time, we found that the interpenetrating structure in 3D COF can be changed through the conversion of linkers. The structure simulation successfully proved the transformation of COF from five-fold to seven-fold interpenetration. In addition, in order to prove the versatility of this strategy, we used the same method to convert COF-300 into a high crystallinity 3D COF(TJNU-COF-302) that is also seven-fold interpenetrating and has not been reported. This simple strategy not only makes it easy to obtain a 3D COF connected with imines, which greatly promotes the development of COF, but also provides a new way to develop 3D COFs with complex interpenetrating structures.  相似文献   

2.
The stability and bulk properties of two-dimensional boronate ester-linked covalent organic frameworks (COFs) were investigated upon exposure to aqueous environments. Enhanced stability was observed for frameworks with alkylation in the pores of the COF compared to nonalkylated, bare-pore frameworks. COF-18? and COF-5 were analyzed as "bare-pore" COFs, while COF-16? (methyl), COF-14? (ethyl), and COF-11? (propyl) were evaluated as "alkylated-pore" materials. Upon submersion in aqueous media, the porosity of alkylated COFs decreased ~25%, while the nonalkylated COFs were almost completely hydrolyzed, virtually losing all porosity. Similar trends were observed for the degree of crystallinity for these materials, with ~40% decrease for alkylated COFs and 95% decrease for nonalkylated COFs. SEM was used to probe the particle size and morphology for these hydrolyzed materials. Stability tests, using absorbance spectroscopy and (1)H NMR, monitored the release of monomers as the COF degraded. While nonalkylated COFs were stable in organic solvent, hydrolysis was rapid in aqueous environments, more so in basic compared to neutral or acidic aqueous media (minutes to hours, respectively). Notably, alkylation in the pores of COFs slows hydrolysis, exhibiting up to a 50-fold enhancement in stability for COF-11? over COF-18?.  相似文献   

3.
Featuring the art of covalent chemistry on 2D and 3D with molecular precision, covalent organic frameworks (COFs) have attracted immense interests from inorganic, organic, polymer, materials and energy chemistry. However, due to the synthetic challenge of “crystallization problem”, structural determination of COFs has been the bottle‐neck in speeding up their discovery and design, as well as building up their structure‐ property relation. Electron diffraction tomography (EDT) has been developed to determine crystal structures of COFs with only sub‐micrometer sized single crystals, which enabled the ab initio determination of crystal structure, molecular connectivity, pore metrics, and host‐guest interaction at the atomic level. In this review, we summarized the recent developments of EDT for addressing challenges in structure determinations of such e‐beam sensitive, organic porous crystals, covering comprehensively automatic data collection, low dose, cryogenic protocols, structural solution method, powder X‐ray diffraction refinement, and high‐resolution transmission electron microscopy (HRTEM) imaging techniques. We do believe the EDT will propel this field into the new era of COF chemistry with atomic precision, and we envision the wide application of artificial intelligence will promote the structural determination and particle analysis of COFs and related materials.  相似文献   

4.
Covalent organic frameworks as exceptional hydrogen storage materials   总被引:3,自引:0,他引:3  
We report the H2 uptake properties of six covalent organic frameworks (COFs) from first-principles-based grand canonical Monte-Carlo simulations. The predicted H2 adsorption isotherm is in excellent agreement with the only available experimental result (3.3 vs 3.4 wt % at 50 bar and 77 K for COF-5), also reported here, validating the predictions. We predict that COF-105 and COF-108 lead to a reversible excess H2 uptake of 10.0 wt % at 77 K, making them the best known storage materials for molecular hydrogen at 77 K. We predict that the total H2 uptake for COF-108 is 18.9 wt % at 77 K. COF-102 shows the best volumetric performance, storing 40.4 g/L of H2 at 77 K. These results indicate that the COF systems are most promising candidates for practical hydrogen storage.  相似文献   

5.
Three new post-synthetic modification reactions, namely amidation, esterification, and thioesterification, were demonstrated on a novel highly crystalline two-dimensional covalent organic framework (COF), COF-616, bearing pre-installed carboxyl groups. The strategy can be used to introduce a large variety of functional groups into COFs and the modifications can be carried out under mild reaction conditions, with high yields, and an easy work-up protocol. As a proof of concept, various chelating functionalities were successfully incorporated into COF-616 to yield a family of adsorbents for efficient removal of several contaminants in the water.  相似文献   

6.
Macrocycle-to-framework strategy was explored to prepare covalent organic frameworks (COFs) using shape-persistent macrocycles as multitopic building blocks. We demonstrate well-ordered mesoporous 2D COFs (AEM–COF-1 and AEM–COF-2) can be constructed from tritopic arylene-ethynylene macrocycles, which determine the topology and modulate the porosity of the materials. According to PXRD analysis and computer modelling study, these COFs adopt the fully eclipsed AA stacking mode with large accessible pore sizes of 34 or 39 Å, which are in good agreement with the values calculated by NLDFT modelling of gas adsorption isotherms. The pore size of COFs can be effectively expanded by using larger size of the macrocycles. Provided a plethora of polygonal shape-persistent macrocycles with various size, shape and internal cavity, macrocycle-to-framework strategy opens up a promising approach to expand the structural diversity of COFs and build hierarchical pore structures within the framework.  相似文献   

7.
Imine-linked covalent organic frameworks (COFs) have been extensively studied in photocatalysis because of their easy synthesis and excellent crystallinity. The effect of imine-bond orientation on the photocatalytic properties of COFs, however, is still rarely studied. Herein, we report two novel COFs with different orientations of imine bonds using oligo(phenylenevinylene) moieties. The COFs showed similar structures but great differences in their photoelectric properties. COF-932 demonstrated a superior hydrogen evolution performance compared to COF-923 when triethanolamine was used as the sacrificial agent. Interestingly, the use of ascorbic acid led to the protonation of the COFs, further altering the direction of electron transfer. The photocatalytic performances were increased to 23.4 and 0.73 mmol g−1 h−1 for protonated COF-923 and COF-932, respectively. This study provides a clear strategy for the design of imine-linked COF-based photocatalysts and advances the development of COFs.  相似文献   

8.
Chemical functionalization of covalent organic frameworks (COFs) is critical for tuning their properties and broadening their potential applications. However, the introduction of functional groups, especially to three‐dimensional (3D) COFs, still remains largely unexplored. Reported here is a general strategy for generating a 3D carboxy‐functionalized COF through postsynthetic modification of a hydroxy‐functionalized COF, and for the first time exploration of the 3D carboxy‐functionalized COF in the selective extraction of lanthanide ions. The obtained COF shows high crystallinity, good chemical stability, and large specific surface area. Furthermore, the carboxy‐functionalized COF displays high metal loading capacities together with excellent adsorption selectivity for Nd3+ over Sr2+ and Fe3+ as confirmed by the Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. This study not only provides a strategy for versatile functionalization of 3D COFs, but also opens a way to their use in environmentally related applications.  相似文献   

9.
Imine-based covalent organic frameworks (COFs) are crystalline porous materials with prospective uses in various devices. However, general bulk synthetic methods usually produce COFs as powders that are insoluble in most of the common organic solvents, arising challenges for the subsequent molding and fixing of these materials on substrates. Here, we report a novel synthetic methodology that utilizes an electrogenerated acid (EGA), which is produced at an electrode surface by electrochemical oxidation of a suitable precursor, acting as an effective Brønsted acid catalyst for imine bond formation from the corresponding amine and aldehyde monomers. Simultaneously, it provides the corresponding COF film deposited on the electrode surface. The COF structures obtained with this method exhibited high crystallinities and porosities, and the film thickness could be controlled. Furthermore, such process was applied for the synthesis of various imine-based COFs, including a three-dimensional (3D) COF structure.  相似文献   

10.
Covalent organic frameworks (COFs) have gained significant attention as key photocatalysts for efficient solar light conversion into hydrogen production. Unfortunately, the harsh synthetic conditions and intricate growth process required to obtain highly crystalline COFs greatly hinder their practical application. Herein, we report a simple strategy for the efficient crystallization of 2D COFs based on the intermediate formation of hexagonal macrocycles. Mechanistic investigation suggests that the use of 2,4,6-triformyl resorcinol (TFR) as the asymmetrical aldehyde build block allows the equilibration between irreversible enol-to-keto tautomerization and dynamic imine bonds to produce the hexagonal β-ketoenamine-linked macrocycles, the formation of which could provide COFs with high crystallinity in half hour. We show that COF-935 with 3 wt % Pt as cocatalyst exhibit a high hydrogen evolution rate of 67.55 mmol g−1 h−1 for water splitting when exposed to visible light. More importantly, COF-935 exhibits an average hydrogen evolution rate of 19.80 mmol g−1 h−1 even at a low loading of only 0.1 wt % Pt, which is a significant breakthrough in this field. This strategy would provide valuable insights into the design of highly crystalline COFs as efficient organic semiconductor photocatalysts.  相似文献   

11.
Integrating different kinds of pores into one covalent organic framework (COF) endows it with hierarchical porosity and thus generates a member of a new class of COFs, namely, heteropore COFs. Whereas the construction of COFs with homoporosity has already been well developed, the fabrication of heteropore COFs still faces great challenges. Although two strategies have recently been developed to successfully construct heteropore COFs from noncyclic building blocks, they suffer from the generation of COF isomers, which decreases the predictability and controllability of construction of this type of reticular materials. In this work, this drawback was overcome by a multiple‐linking‐site strategy that offers precision construction of heteropore COFs containing two kinds of hexagonal pores with different shapes and sizes. This strategy was developed by designing a building block in which double linking sites are introduced at each branch of a C3‐symmetric skeleton, the most widely used scaffold to construct COFs with homogeneous porosity. This design provides a general way to precisely construct heteropore COFs without formation of isomers. Furthermore, the as‐prepared heteropore COFs have hollow‐spherical morphology, which has rarely been observed for COFs, and an uncommon staggered AB stacking was observed for the layers of the 2D heteropore COFs.  相似文献   

12.
Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.  相似文献   

13.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z-scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z-scheme photocatalysts combining water-oxidation semiconductors (TiO2, Bi2WO6, and α-Fe2O3) with CO2 reduction COFs (COF-316/318) was synthesized and exhibited high photocatalytic CO2-to-CO conversion efficiencies (up to 69.67 μmol g−1 h−1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic-semiconductor systems utilizing the Z-scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor-to-COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

14.
Utilizing weak interactions to effectively recover and separate precious metals in solution is of great importance but the practice remains a challenge. Herein, we report a novel strategy to achieve precise recognition and separation of gold by regulating the hydrogen-bond (H-bond) nanotrap within the pore of covalent organic frameworks (COFs). It is found that both COF-HNU25 and COF-HNU26 can efficiently capture AuIII with fast kinetics, high selectivity, and uptake capacity. In particular, the COF-HNU25 with the high density of H-bond nanotraps exhibits an excellent gold uptake capacity of 1725 mg g−1, which is significantly higher than that (219 mg g−1) of its isostructural COF (COF-42) without H-bond nanostrap in the pores. Importantly, the uptake capacity is strongly correlated to the number of H-bonds between phenolic OH in the COF and [AuCl4] in water, and multiple H-bond interactions are the key driving force for the excellent gold recovery and reusability of the adsorbent.  相似文献   

15.
We report the crystal structure of a new polymorph of l-tyrosine (denoted the β polymorph), prepared by crystallization from the gas phase following vacuum sublimation. Structure determination was carried out by combined analysis of three-dimensional electron diffraction (3D-ED) data and powder X-ray diffraction (XRD) data. Specifically, 3D-ED data were required for reliable unit cell determination and space group assignment, with structure solution carried out independently from both 3D-ED data and powder XRD data, using the direct-space strategy for structure solution implemented using a genetic algorithm. Structure refinement was carried out both from powder XRD data, using the Rietveld profile refinement technique, and from 3D-ED data. The final refined structure was validated both by periodic DFT-D calculations, which confirm that the structure corresponds to an energy minimum on the energy landscape, and by the fact that the values of isotropic 13C NMR chemical shifts calculated for the crystal structure using DFT-D methodology are in good agreement with the experimental high-resolution solid-state 13C NMR spectrum. Based on DFT-D calculations using the PBE0-MBD method, the β polymorph is meta-stable with respect to the previously reported crystal structure of l-tyrosine (now denoted the α polymorph). Crystal structure prediction calculations using the AIRSS approach suggest that there are three other plausible crystalline polymorphs of l-tyrosine, with higher energy than the α and β polymorphs.

A new polymorph of l-tyrosine is reported, with the crystal structure determined by combined analysis of 3D-ED data and powder XRD data, augmented by information from periodic DFT-D calculations and solid-state 13C NMR data.  相似文献   

16.
《中国化学快报》2023,34(1):107201
Development of adsorbent materials for highly efficient iodine capture is high demand from the perspective of ecological environment and human health. Herein, the two kinds of thiophene-based covalent organic frameworks (COFs) with different morphologies were synthesized by solvothermal reaction using thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) as the aldehyde monomer and tri(4-aminophenyl)benzene (PB) or tris(4-aminophenyl)amine (PA) as the amino monomer (denoted as PB-TT COF and PA-TT COF) and the as-prepared two heteroatoms-rich COFs possessed many excellent properties, including high thermal stability and abundant binding sites. Among them, PB-TT COF exhibited ultra-high iodine uptake up to 5.97 g/g in vapor, surpassing most of adsorbents previously reported, which was ascribed to its high specific surface (1305.3 m2/g). Interestingly, PA-TT COF with low specific surface (48.6 m2/g) showed good adsorption ability for iodine in cyclohexane solution with uptake value of 750 mg/g, which was 2.38 times higher than that obtained with PB-TT COF due to its unique sheet-like morphology. Besides, the two COFs possessed good reusability, high selectivity and iodine retention ability. Based on experimental results, the adsorption mechanisms of both COFs were studied, revealing that iodine was captured by the physical-chemical adsorption. Furthermore, the both COFs showed excellent adsorption ability in real radioactive seawater treated safely, demonstrating their great potential in real environment.  相似文献   

17.
Covalent‐Organic Frameworks (COFs) are a new family of 2D and 3D highly porous and crystalline materials built of light elements, such as boron, oxygen and carbon. For all 2D COFs, an AA stacking arrangement has been reported on the basis of experimental powder XRD patterns, with the exception of COF‐1 (AB stacking). In this work, we show that the stacking of 2D COFs is different as originally suggested: COF‐1, COF‐5, COF‐6 and COF‐8 are considerably more stable if their stacking arrangement is either serrated or inclined, and layers are shifted with respect to each other by ~1.4 Å compared with perfect AA stacking. These structures are in agreement with to date experimental data, including the XRD patterns, and lead to a larger surface area and stronger polarisation of the pore surface.  相似文献   

18.
Flexible covalent organic frameworks (COFs) are intriguing for their dynamic properties distinctive from rigid counterparts but still suffer from limited accessibility. Especially, controlling flexibility of COFs is challenging and the impact of different flexibility on properties of COFs has rarely been unveiled. This article reports stepwise adjustment on flexibility of two-dimensional COFs, which is realized by the designed synthesis of rigid COF (R-COF), semi-flexible COF (SF-COF), and flexible COF (F-COF) through polymerization, linker exchange, and linkage conversion with a newly developed method for reduction of hydrazone, respectively. Significant difference in breathing behavior and self-adaptive capability of the three COFs are uncovered through vapor response and iodine capture experiments. Gas sorption experiments indicate that the porosity of F-COF could switch from “close” state in nitrogen to “open” state in carbon dioxide, which are not observed for R-COF and SF-COF. This study not only develops a strategy to adjust the flexibility of COFs by tuning their linkers and linkages, but also provides a deep insight into the impact of different flexibility on properties of COFs, which lays a foundation for the development of this new class of dynamic porous materials.  相似文献   

19.
Metalation of covalent organic frameworks (COFs) is a critical strategy to functionalize COFs for advanced applications yet largely relies on the pre-installed specific metal docking sites in the network, such as porphyrin, salen, 2,2′-bipyridine, etc. We show in this study that the imine linkage of simple imine-based COFs, one of the most popular COFs, readily chelate transition metal (Ir in this work) via cyclometalation, which has not been explored before. The iridacycle decorated COF exhibited more than 10-fold efficiency enhancement in (photo)catalytic hydrogen evolution from aqueous formate solution than its molecular counterpart under mild conditions. This work will inspire more functional cyclometallated COFs to be explored beyond catalysis considering the large imine COF library and the rich metallacycle chemistry.

This study describes cyclometallation as a new metal binding mode for imine-based COFs. The iridacycle decorated COF could be used for catalytic hydrogen evolution from aqueous formate solution with high stability and high efficacy.  相似文献   

20.
共价有机框架材料催化研究进展   总被引:1,自引:0,他引:1  
共价有机框架材料(COFs)是一类具有高比表面积、高孔隙率、高结晶度的结构多样性多孔材料.由于COFs具有可设计性、易功能化的特点,可通过"自上而下"或者后修饰策略将具有催化活性的官能团或金属颗粒嵌入到材料骨架当中,从而设计出高效催化剂. COFs已逐渐在多相催化及其它催化领域展现出非常大的应用价值.本文综述了COFs作为催化剂载体在多种催化反应中的合成策略与应用,对COFs催化剂的现状进行了总结与展望,同时指出该领域面临的问题与挑战.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号