首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lantibiotics are ribosomally synthesized and post‐translationally modified peptides (RiPPs) characterized by the presence of lanthionine or methyllanthionine rings and their antimicrobial activity. Cacaoidin, a novel glycosylated lantibiotic, was isolated from a Streptomyces cacaoi strain and fully characterized by NMR, mass spectrometry, chemical derivatization approaches and genome analysis. The new molecule combines outstanding structural features, such as a high number of d ‐amino acids, an uncommon glycosylated tyrosine residue and an unprecedented N,N‐dimethyl lanthionine. This latter feature places cacaoidin within a new RiPP family located between lanthipeptides and linaridins, here termed lanthidins. Cacaoidin displayed potent antibacterial activity against Gram‐positive pathogens including Clostridium difficile. The biosynthetic gene cluster showed low homology with those of other known lanthipeptides or linaridins, suggesting a new RiPP biosynthetic pathway.  相似文献   

2.
Lanthipeptides are one of the largest groups of ribosomally synthesized and post-translationally modified peptides(RiPPs) and are characterized by the presence of lanthionine(Lan) or methyllanthionine residues(MeLan). Only very few lanthipeptides contain a C-terminal 2-aminovinyl-cysteine(AviCys) motif, but all of them show potent antibacterial activities. Recent advances of genome sequencing led to the rapid accumulation of new biosynthetic gene clusters(BGCs) for lanthipeptides. In this study,...  相似文献   

3.
Ribosomally synthesized and posttranslationally modified peptide natural products (RiPPs) exhibit diverse structures and bioactivities and are classified into distinct biosynthetic families. A recently reported family is the proteusins, with the prototype members polytheonamides being generated by almost 50 maturation steps, including introduction of d ‐residues at multiple positions by an unusual radical SAM epimerase. A region in the protein‐like N‐terminal leader of proteusin precursors is identified that is crucial for epimerization. It resembles a precursor motif previously shown to mediate interaction in thioether bridge‐formation in class I lanthipeptide biosynthesis. Beyond this region, similarities were identified between proteusin and further RiPP families, including class I lanthipeptides. The data suggest that common leader features guide distinct maturation types and that nitrile hydratase‐like enzymes are ancestors of several RiPP classes.  相似文献   

4.
Lantibiotics are a type of ribosomally synthesized and post-translationally modified peptides (termed lanthipeptides) with often potent antimicrobial activity. Herein, we report the discovery of a new lantibiotic, lexapeptide, using the library expression analysis system (LEXAS) approach. Lexapeptide has rare structural modifications, including N-terminal (N,N)-dimethyl phenylalanine, C-terminal (2-aminovinyl)-3-methyl-cysteine, and d -Ala. The characteristic lanthionine moiety in lexapeptide is formed by three proteins (LxmK, LxmX, and LxmY), which are distinct from enzymes known to be involved in lanthipeptide biosynthesis. Furthermore, a novel F420H2-dependent reductase (LxmJ) from the lexapeptide biosynthetic gene cluster (BGC) is identified to catalyze the reduction of dehydroalanine to install d -Ala. Our findings suggest that lexapeptide is the founding member of a new class of lanthipeptides that we designate as class V. We also identified further class V lanthipeptide BGCs in actinomycetes and cyanobacteria genomes, implying that other class V lantibiotics await discovery.  相似文献   

5.
Lantibiotics are a type of ribosomally synthesized and post‐translationally modified peptides (termed lanthipeptides) with often potent antimicrobial activity. Herein, we report the discovery of a new lantibiotic, lexapeptide, using the library expression analysis system (LEXAS) approach. Lexapeptide has rare structural modifications, including N‐terminal (N,N)‐dimethyl phenylalanine, C‐terminal (2‐aminovinyl)‐3‐methyl‐cysteine, and d ‐Ala. The characteristic lanthionine moiety in lexapeptide is formed by three proteins (LxmK, LxmX, and LxmY), which are distinct from enzymes known to be involved in lanthipeptide biosynthesis. Furthermore, a novel F420H2‐dependent reductase (LxmJ) from the lexapeptide biosynthetic gene cluster (BGC) is identified to catalyze the reduction of dehydroalanine to install d ‐Ala. Our findings suggest that lexapeptide is the founding member of a new class of lanthipeptides that we designate as class V. We also identified further class V lanthipeptide BGCs in actinomycetes and cyanobacteria genomes, implying that other class V lantibiotics await discovery.  相似文献   

6.
The biosynthetic machinery of the first fungal ribosomally synthesized and post‐translationally modified peptide (RiPP) ustiloxin B was elucidated through a series of gene inactivation and heterologous expression studies. The results confirmed an essential requirement for novel oxidases possessing the DUF3328 motif for macrocyclization, and highly unique side‐chain modifications by three oxidases (UstCF1F2) and a pyridoxal 5′‐phosphate (PLP)‐dependent enzyme (UstD). These findings provide new insight into the expression of the RiPP gene clusters found in various fungi.  相似文献   

7.
8.
Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a structurally diverse class of natural product with a wide range of bioactivities. Genome mining for RiPP biosynthetic gene clusters (BGCs) is often hampered by poor annotation of the short precursor peptides that are ultimately modified into the final molecule. Here, we utilise a previously described genome mining tool, RiPPER, to identify novel RiPP precursor peptides near YcaO-domain proteins, enzymes that catalyse various RiPP post-translational modifications including heterocyclisation and thioamidation. Using this dataset, we identified a novel and diverse family of RiPP BGCs spanning over 230 species of Actinobacteria and Firmicutes. A representative BGC from Streptomyces albidoflavus J1074 (formerly known as Streptomyces albus) was characterised, leading to the discovery of streptamidine, a novel amidine-containing RiPP. This new BGC family highlights the breadth of unexplored natural products with structurally rare features, even in model organisms.

Genome mining for pathways containing YcaO proteins revealed a widespread novel family of RiPP gene clusters. A model gene cluster was characterised through genetic and chemical analyses, which yielded streptamidine, a novel amidine-containing RiPP.  相似文献   

9.
Ribosomally synthesized and post‐translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this Concept article, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the post‐translational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution.  相似文献   

10.
Thiostreptamide S4 is a thioamitide, a family of promising antitumour ribosomally synthesised and post-translationally modified peptides (RiPPs). The thioamitides are one of the most structurally complex RiPP families, yet very few thioamitide biosynthetic steps have been elucidated, even though the biosynthetic gene clusters (BGCs) of multiple thioamitides have been identified. We hypothesised that engineering the thiostreptamide S4 BGC in a heterologous host could provide insights into its biosynthesis when coupled with untargeted metabolomics and targeted mutations of the precursor peptide. Modified BGCs were constructed, and in-depth metabolomics enabled a detailed understanding of the biosynthetic pathway to thiostreptamide S4, including the identification of a protein critical for amino acid dehydration that has homology to HopA1, an effector protein used by a plant pathogen to aid infection. We use this biosynthetic understanding to bioinformatically identify diverse RiPP-like BGCs, paving the way for future RiPP discovery and engineering.

Heterologous expression, pathway mutations and detailed metabolomic analysis were used to deduce a model for the biosynthesis of thiostreptamide S4, which belongs the thioamitide family of antitumour RiPPs.  相似文献   

11.
Bottromycin A2 is a structurally unique ribosomally synthesized and post‐translationally modified peptide (RiPP) that possesses potent antibacterial activity towards multidrug‐resistant bacteria. The structural novelty of bottromycin stems from its unprecedented macrocyclic amidine and rare β‐methylated amino acid residues. The N‐terminus of a precursor peptide (BtmD) is converted into bottromycin A2 by tailoring enzymes encoded in the btm gene cluster. However, little was known about key transformations in this pathway, including the unprecedented macrocyclization. To understand the pathway in detail, an untargeted metabolomic approach that harnesses mass spectral networking was used to assess the metabolomes of a series of pathway mutants. This analysis has yielded key information on the function of a variety of previously uncharacterized biosynthetic enzymes, including a YcaO domain protein and a partner protein that together catalyze the macrocyclization.  相似文献   

12.
The recently discovered strongly anti‐Gram‐positive lipolanthines represent a new group of lipidated, ribosomally synthesized and post‐translationally modified peptides (RiPPs). They are bicyclic octapeptides with a central quaternary carbon atom (avionin), which is installed through the cooperative action of the class‐III lanthipeptide synthetase MicKC and the cysteine decarboxylase MicD. Genome mining efforts indicate a widespread distribution and unprecedented biosynthetic diversity of lipolanthine gene clusters, combining elements of RiPPs, polyketide and non‐ribosomal peptide biosynthesis. Utilizing NMR spectroscopy, we show that a (θxx)θxxθxxθ (θ=L, I, V, M or T) motif, which is conserved in the leader peptides of all class‐III and ‐IV lanthipeptides, forms an amphipathic α‐helix in MicA that destines the peptide substrate for enzymatic processing. Our results provide general rules of substrate recruitment and enzymatic regulation during lipolanthine maturation. These insights will facilitate future efforts to rationally design new lanthipeptide scaffolds with antibacterial potency.  相似文献   

13.
Ornithine is a component of many bioactive nonribosomal peptides but is challenging to incorporate into ribosomal products. We recently identified OspR, a cyanobacterial arginase-like enzyme that installs ornithines in the antiviral ribosomally synthesised and posttranslationally modified peptide (RiPP) landornamide A. Here we report that OspR belongs to a larger family of peptide arginases from diverse organisms and RiPP types. In E. coli, seven selected enzymes converted arginine into ornithine with little preference for the leader type. A broad range of peptide sequences was modified, including polyarginine repeats. We also generated analogues of ornithine-containing nonribosomal peptides using RiPP technology. Five pseudo-nonribosomal products with ornithines at the correct positions were obtained, including a brevicidine analogue containing ornithine and a d -amino acid installed by the peptide epimerase OspD. These results suggest new opportunities for peptide bioengineering.  相似文献   

14.
Research on ribosomally synthesized and posttranslationally modified peptides (RiPPs) has led to an increasing understanding of biosynthetic mechanisms, mostly drawn from bacterial examples. In contrast, reports on RiPPs from fungal producers, apart from the amanitins and phalloidins, are still scarce. The fungal cyclopeptide omphalotin A carries multiple N‐methylations on the peptide backbone, a modification previously known only from nonribosomal peptides. Mining the genome of the omphalotin‐producing fungus for a precursor peptide led to the identification of two biosynthesis genes, one encoding a methyltransferase OphMA that catalyzes the automethylation of its C‐terminus, which is then released and cyclized by the protease OphP. Our findings suggest a novel biosynthesis mechanism for a RiPP in which a modifying enzyme bears its own precursor peptide.  相似文献   

15.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a structurally diverse group of natural products. They feature a wide range of intriguing post-translational modifications, as exemplified by the biarylitides. These are a family of cyclic tripeptides found in Planomonospora, carrying a biaryl linkage between two aromatic amino acids. Recent genomic analyses revealed that the minimal biosynthetic prerequisite of biarylitide biosynthesis consists of only one ribosomally synthesized pentapeptide precursor as the substrate and a modifying cytochrome-P450-dependent enzyme. In silico analyses revealed that minimal biarylitide RiPP clusters are widespread among natural product producers across phylogenetic borders, including myxobacteria. We report here the genome-guided discovery of the first myxobacterial biarylitide MeYLH, termed Myxarylin, from Pyxidicoccus fallax An d48. Myxarylin was found to be an N-methylated tripeptide that surprisingly exhibits a C–N biaryl crosslink. In contrast to Myxarylin, previously isolated biarylitides are N-acetylated tripeptides that feature a C–C biaryl crosslink. Furthermore, the formation of Myxarylin was confirmed by the heterologous expression of the identified biosynthetic genes in Myxococcus xanthus DK1622. These findings expand the structural and biosynthetic scope of biarylitide-type RiPPs and emphasize the distinct biochemistry found in the myxobacterial realm.  相似文献   

16.
《Tetrahedron letters》1988,29(7):795-798
Total synthesis of a lanthionine peptide nisin was successfully achieved for the first time by application of new methods for preparations of dehydroalanine and lanthionine moieties, resulting in a confirmation of the proposed structure.  相似文献   

17.
Lantibiotics (lanthionine‐containing antibiotics) from Gram‐positive bacteria typically exhibit activity against Gram‐positive bacteria. The activity and structure of pinensin A ( 1 ) and B ( 2 ), lantibiotics isolated from a native Gram‐negative producer Chitinophaga pinensis are described. Surprisingly, the pinensins were found to be highly active against many filamentous fungi and yeasts but show only weak antibacterial activity. To the best of our knowledge, lantibiotic fungicides have not been described before. An in‐depth bioinformatic analysis of the biosynthetic gene cluster established the ribosomal origin of these compounds and identified candidate genes encoding all of the enzymes required for post‐translational modification. Additional encoded functions enabled us to build up a hypothesis for the biosynthesis, export, sensing, and import of this intriguing lantibiotic.  相似文献   

18.
Lacticin 3147 is a lantibiotic with seven lanthionine bridges across its two component peptides, Ltnα and Ltnβ. Although it has been proposed that the eponymous lanthionine and (β-methyl)lanthionine (Lan and meLan) bridges present in lantibiotics make an important contribution to protecting the peptides from thermal or proteolytic degradation, few studies have investigated this link. We have generated a bank of bioengineered derivatives of lacticin 3147, in which selected bridges were removed or converted between Lan and meLan, which were exposed to high temperature or proteolytic enzymes. Although switching Lan and meLan bridges has variable consequences, it was consistently observed that an intact N-terminal lanthionine bridge (Ring A) confers Ltnα with enhanced resistance to thermal and proteolytic degradation.  相似文献   

19.
Synthetic approaches to the lantibiotics, a family of thioether-bridged antimicrobial peptides, require flexible synthetic routes to a variety of orthogonally protected derivatives of lanthionine 1. The most direct approaches to lanthionine involve the reaction of cysteine with an alanyl beta-cation equivalent. Several possibilities exist for the alanyl beta-cation equivalent, including direct activation of serine under Mitsunobu conditions: however, the low reactivity of sulfur nucleophiles in the Mitsunobu reaction has previously precluded its use in the synthesis of the lantibiotics. We report here a new approach to the synthesis of protected lanthionine, using a novel variant of the Mitsunobu reaction in which catalytic zinc tartrate is used to enhance the nucleophilicity of the thiol. In the course of these studies, we have also demonstrated that the synthesis of lanthionine from trityl-protected beta-iodoalanines is prone to rearrangement, via an aziridine, to give predominantly trityl-protected alpha-iodo-beta-alanines, and hence norlanthionines, as the major products.  相似文献   

20.
Lantibiotic peptides are potent antimicrobial compounds produced by Gram-positive bacteria. They can be used in food preservation, and some also show potential for clinical applications. Unfortunately, some of these peptides can be susceptible to inactivation by oxidation of the sulfur-containing amino acid lanthionine, limiting their use. Here we describe the synthesis and testing of diaminopimelate analogues of the lantibiotic lactocin S. These analogues were designed to improve the oxidative stability of the peptide by replacing the sulfur in lanthionine with a methylene unit. Lanthionine was systematically replaced with diaminopimelate during solid-phase peptide synthesis to produce several analogues. One analogue, A-DAP lactocin S, was found to retain full biological activity in addition to displaying increased stability. This is the first time a synthetic lanthionine ring analogue of a lantibiotic has retained natural activity levels. This methodology is potentially very promising for use in producing more stable, medically relevant lantibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号