首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Redox mediators (RMs) are considered an effective countermeasure to reduce the large polarization in lithium‐oxygen batteries. Nevertheless, achieving sufficient enhancement of the cyclability is limited by the trade‐offs of freely mobile RMs, which are beneficial for charge transport but also trigger the shuttling phenomenon. Here, we successfully decoupled the charge‐carrying redox property of RMs and shuttling phenomenon by anchoring the RMs in polymer form, where physical RM migration was replaced by charge transfer along polymer chains. Using PTMA (poly(2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐4‐yl methacrylate)) as a polymer model system based on the well‐known RM tetramethylpiperidinyloxyl (TEMPO), it is demonstrated that PTMA can function as stationary RM, preserving the redox activity of TEMPO. The efficiency of RM‐mediated Li2O2 decomposition remains remarkably stable without the consumption of oxidized RMs or degradation of the lithium anode, resulting in an improved performance of the lithium‐oxygen cell.  相似文献   

2.
The instabilities of the battery including cathode corrosion/passivation,shuttling effect of the redox mediators,Li anode corrosion,and electrolyte decomposition are major barriers toward the practical implementation of lithium-oxygen(Li-O2)batteries.Functional materials offer great potential in high performance Li-O2 batteries owing to their functional tailorability of chemical modification for alleviating side reactions and improving catalysis activity,well-defined properties for discharge products storage,and fast mass and electron transfer paths.In this review,instability problems of non-aqueous Li-O2 batteries and recent studies related to the functional materials in tackling the instability issues from rational cathode construction,inhibition of redox mediators(RMs)shuttling,anode protection and novel electrolyte design are illustrated.Future research directions to overcome the critical issues are also proposed for this promising battery technology.The instability issues and the related strategies with functional materials based on the comprehensive consideration of all battery components proposed in this review provide the systematic,deep understanding and rational design of functional materials for Li-O2 batteries,which is beneficial to achieving the practical Li-O2 batteries.  相似文献   

3.
Reverse micelles (RMs) are very good nanoreactors because they can create a unique microenvironment for carrying out a variety of chemical and biochemical reactions. The aim of the present work is to determine the influence of different RM interfaces on the hydrolysis of 2‐naphthyl acetate (2‐NA) by α‐chymotrypsin (α‐CT). The reaction was studied in water/benzyl‐n‐hexadecyldimethylammonium chloride (BHDC)/benzene RMs and, its efficiency compared with that observed in pure water and in sodium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT) RMs. Thus, the hydrolysis rates of 2‐NA catalyzed by α‐CT were determined by spectroscopic measurements. In addition, the method used allows the joint evaluation of the substrate partition constant Kp between the organic and the micellar pseudophase and the kinetic parameters: catalytic rate constant kcat, and the Michaelis constant KM of the enzymatic reaction. The effect of the surfactant concentration on the kinetics parameters was determined at constant W0=[H2O]/[surfactant], and the variation of W0 with surfactant constant concentration was investigated. The results show that the classical Michaelis–Menten mechanism is valid for α‐CT in all of the RMs systems studied and that the reaction takes place at both RM interfaces. Moreover, the catalytic efficiency values kcat/KM obtained in the RMs systems are higher than that reported in water. Furthermore, there is a remarkable increase in α‐CT efficiency in the cationic RMs in comparison with the anionic system, presumably due to the unique water properties found in these confined media. The results show that in cationic RMs the hydrogen‐bond donor capacity of water is enhanced due to its interaction with the cationic interface. Hence, entrapped water can be converted into “super‐water” for the enzymatic reaction studied in this work.  相似文献   

4.
Smart hydrogels containing 2,2,6,6-tetramethylpiperidinoxy methacrylate (TEMPO) and N-isopropylacrylamide (NIPAM) that undergo reversible redox behavior are prepared and investigated. Several polymer networks are first prepared by free-radical copolymerization of varying amounts of TEMPO, NIPAM, and a crosslinker (diethylene glycol diacrylate) and subsequently swelled with water to lead to hydrogels. In order to investigate the effects of the redox activity of TEMPO units and of the lower critical solution temperature of NIPAM on the hydrogel properties, a study of the swelling ratio of the polymer networks in distilled water at different temperatures is performed for the two forms of TEMPO, the reduced (TEMPO) and oxidized (TEMPO+) one. Moreover, the rheological properties are also measured for both hydrogel forms. Finally, the encapsulation abilities of the oxidized hydrogels are demonstrated via electrostatic interactions between positively charged TEMPO+ units and negatively charged guest molecules, supporting future application of our system in the biomedical and environmental fields.  相似文献   

5.
Summary In order to improve the methods for the determination of vitamins in food for nutritional purposes, the Commission's Community Bureau of Reference (BCR) has initiated a comprehensive research programme consisting of intercomparisons of methods to identify and eliminate sources of error and the preparation of reference materials (RMs). Six food RMs have been prepared to date including brussels sprouts, mixed vegetables and pigs' liver (all in the lyophilised form), vitamin enriched milk powder, wholemeal flour and margarine. The first five materials have been packaged into heat sealable, aluminium-laminate sachets under an inert atmosphere; margarine is a canned product. The initial homogeneity results have indicated no detectable signs of inhomogeneity for the vitamins/RMs investigated. Stability testing has monitored both short-term stability at elevated temperatures (+25 to 40°C, 8 weeks) and long-term stability –30 to +20°C, 36 months). The former was used to evaluate the effect of adverse shipment conditions on vitamin stability. Vitamins C and B1, two of the more labile vitamins, have been found to be stable for up to 4 weeks at +25°C and 8 weeks at +37°C in brussels sprouts (RM 431) and wholemeal flour (RM 122), respectively.The results of long-term stability testing of vitamins C and B1 in these RMs indicate there was no significant degradation of vitamin C in RM 431 for up to 24 months at –18 and +4°C when the data was expressed on the basis of the –30°C data (analytical control). Similarly, no significant degradation for vitamin B1 in RM 122 was found at +4 and +20°C for up to 12 months, again after expressing the data on the basis of the analytical control (–20°C). Once acceptable homogeneity and stability results have been found, certification studies for each vitamin/RM are planned.  相似文献   

6.
A new TEMPO-mediated catalytic oxidation method in combination with Py·HBr3 (stoichiometric) is developed for oxidation of secondary alcohols to the corresponding ketones. The performance of this oxidizing system is better compared with that of TEMPO method combined with R4NBr3. Poly(4-vinylpyridine)·HBr3 can be used in place of Py·HBr3. The electron-withdrawing substituent at the C-4 position of TEMPO increases the reactivity of TEMPO significantly in the oxidation of electron-deficient alcohols such as polyhaloalkylmethanols. Inductive effect of the substituent of TEMPO is discussed through the characterization of the redox potential of N-O radical by cyclic voltammetry.  相似文献   

7.
Use of redox mediators (RMs) is an effective strategy to enhance reaction kinetics of multi‐electron sulfur electrochemistry. However, the soluble small‐molecule RMs usually aggravate the internal shuttle and thus further reduce the battery efficiency and cyclability. A semi‐immobilization strategy is now proposed for RM design to effectively regulate the sulfur electrochemistry while circumvent the inherent shuttle issue in a working battery. Small imide molecules as the model RMs were co‐polymerized with moderate‐chained polyether, rendering a semi‐immobilized RM (PIPE) that is spatially restrained yet kinetically active. A small amount of PIPE (5 % in cathode) extended the cyclability of sulfur cathode from 37 to 190 cycles with 80 % capacity retention at 0.5 C. The semi‐immobilization strategy helps to understand RM‐assisted sulfur electrochemistry in alkali metal batteries and enlightens the chemical design of active additives for advanced electrochemical energy storage devices.  相似文献   

8.
Attaching π-conjugated molecules onto TiO2 can form surface complexes that could capture visible light. However, to make these TiO2 surface complexes durable, integrating 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or its analogues as a redox mediator with photocatalysis is the key to constructing selective chemical transformations. Herein, sodium 6,7-dihydroxynaphthalene-2-sulfonate (DHNS) was obtained by extending the π-conjugated system of catechol by adding a benzene ring and a substituent sodium sulfonate (−SO3Na+). The DHNS−TiO2 showed the best photocatalytic activity towards the blue light-induced selective aerobic oxidation of benzylamine. Compared to TEMPO, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO) could rise above 70% in conversion of benzylamine over the DHNS−TiO2 photocatalyst. Eventually, a wide range of amines could be selectively oxidized into imines with atmospheric O2 by cooperative photocatalysis of DHNS−TiO2 with 4-amino-TEMPO. Notably, superoxide (O2•−) is crucial in coupling the photocatalytic cycle of DHNS−TiO2 and the redox cycle of 4-amino-TEMPO. This work underscores the design of surface ligands for semiconductors and the selection of a redox mediator in visible light photocatalysis for selective chemical transformations.  相似文献   

9.
A polythiophene derivative bearing TEMPO radical was synthesized by oxidative chemical polymerization of its monomer. The polymer had a high spin density (2.05 × 1021 spins/g of polymer). CV studies of the polymer showed that the electrochemical redox reaction of the TEMPO radicals were completely reversible. We demonstrated, for the first time, construction and charge/discharge characteristics of an organic radical battery utilizing a TEMPO bearing polythiophene based cathode material. The battery had an initial specific discharge capacity of 79 A h/kg (87% of the theoretical capacity) and an average output voltage of 3.6 V. The specific energy capacity initially discharged was 268 W h/kg.  相似文献   

10.
The first coupled operando EPR/UV‐Vis/ATR‐IR spectroscopy setup for mechanistic studies of gas‐liquid phase reactions is presented and exemplarily applied to the well‐known copper/TEMPO‐catalyzed (TEMPO=(2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and CuI/CuII has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)CuII‐O2??‐TEMPO (bpy=2,2′‐bipyridine, NMI=N‐methylimidazole) intermediate formed by electron transfer from CuI to molecular O2.  相似文献   

11.
Summary The reference materials (RMs) available for organic trace analysis (OTA) and the development programmes of the RM producers are reviewed. The need for a wider range of determinants, matrices and classes of RMs, particularly the more widespread use of laboratory RMs (LRMs) is discussed. Additional certified RMs should include phenolic surfactant degradation products, chlorophenolics from the wood and paper industries, and organobromines from fire retardants. RMs as molecular markers of geogenic, pyrogenic and biogenic sources; chlorophylls and xanthophylls as a measure of marine productivity and natural shellfish toxins are proposed.
Notwendigkeit organischer Referenzmaterialien in der Meeresforschung
  相似文献   

12.
Extending the conjugation of viologen by a planar thiazolo[5,4‐d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water‐soluble π‐conjugation extended viologen, 4,4′‐(thiazolo[5,4‐d]thiazole‐2,5‐diyl)bis(1‐(3‐(trimethylammonio)propyl)pyridin‐1‐ium) tetrachloride, [(NPr)2TTz]Cl4 , as a novel two‐electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4‐trimethylammonium‐TEMPO (NMe‐TEMPO) as catholyte, [(NPr)2TTz]Cl4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L?1. A demonstrated [(NPr)2TTz]Cl4 /NMe‐TEMPO AORFB delivered an energy efficiency of 70 % and 99.97 % capacity retention per cycle.  相似文献   

13.
Use of redox mediators (RMs) is an effective strategy to enhance reaction kinetics of multi-electron sulfur electrochemistry. However, the soluble small-molecule RMs usually aggravate the internal shuttle and thus further reduce the battery efficiency and cyclability. A semi-immobilization strategy is now proposed for RM design to effectively regulate the sulfur electrochemistry while circumvent the inherent shuttle issue in a working battery. Small imide molecules as the model RMs were co-polymerized with moderate-chained polyether, rendering a semi-immobilized RM (PIPE) that is spatially restrained yet kinetically active. A small amount of PIPE (5 % in cathode) extended the cyclability of sulfur cathode from 37 to 190 cycles with 80 % capacity retention at 0.5 C. The semi-immobilization strategy helps to understand RM-assisted sulfur electrochemistry in alkali metal batteries and enlightens the chemical design of active additives for advanced electrochemical energy storage devices.  相似文献   

14.
Compared with synthetic surfactants (cetyltrimethyl ammonium bromide, sodium bis(2‐ethylhexyl) sulfosuccinate and Tween‐80), the properties of the aqueous core as well as the microenvironment behavior were investigated in water‐in‐oil microemulsions, which are formed by water and biosurfactant rhamnolipid (RL) in the solvent of isooctane/n‐hexanol (1:1, v/v). Besides, as a typical substrate of lignocellulose, guaiacol was used to detect the laccase activity in reversed micelles (RMs). The results were eventually confirmed that RL‐based RM system has higher solubilization ability, more friendly environmental compatibility and milder reaction microenvironment than the others. In this study, triangle phase diagram of surfactant/n‐hexanol/isooctane/water was constructed to analyze the variation of phase behavior between each RM system. For the RL‐based RM system, the effect of the molar ratio of water to surfactant (ω0) on enzyme hydrolytic activity was also determined to be shown as a bell‐shaped curve and presented a maximum at ω0 = 19; the O―H stretching vibrations of water in aqueous core was also studied by analyzing the IR spectrum over the region of 3050–3750 cm ? 1. Moreover, kinetic studies showed that the catalytic efficiency of the laccase in RL‐based RM system was lower than in aqueous solution. Nevertheless, the RM system obtained the highest hydrolysis rate at RL concentration of 1.0CMC, which is 0.055 mM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Chemical single‐electron reduction of 1‐mesityl‐2,3,4,5‐tetraphenylborole ( 3 ) gave a stable radical anion [CoCp*2][ 3 ] as shown in earlier investigations. Herein, we present the reaction of [CoCp*2][ 3 ] with the 2,2,6,6‐tetramethylpiperidine‐N‐oxyl radical (TEMPO), a common radical trap. Instead of radical recombination, the reaction proceeds through a redox pathway involving oxidation of the borole radical anion combined with reduction of TEMPO. This electron‐transfer process is accompanied by a deprotonation reaction of the cobaltocenium counterion by the base TEMPO? to give TEMPO‐H and a neutral cobalt(I) fulvene complex ( 7 ). The latter was not observed directly during the reaction, because it instantaneously reacts as a nucleophile attacking at the boron center of the in situ generated borole 3 to give the borate 6 . However, 7 was synthesized independently by deprotonation of [CoCp*2][PF6]. In addition, the obtained zwitterionic cobaltocenium borate 6 undergoes a photolytic rearrangement to form the borata‐alkene derivative 9 that thermally transforms to the chiral cobaltocenium borate 12 . Our investigations are based on spectroscopic evidence, X‐ray crystallography, elemental analysis, as well as DFT calculations.  相似文献   

16.
Developing stable, readily‐synthesized, and solution‐processable transparent conducting polymers for interfacial modifying layers in organic photovoltaic (OPV) devices has become of great importance. Here, the radical polymer, poly(2,2,6,6‐tetramethylpiperidinyloxy methacrylate (PTMA), is shown to not affect the absorption of the well‐studied poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) active layer when incorporated into inverted OPV devices, as it is highly transparent in the visible spectrum due to the non‐conjugated nature of the PTMA backbone. The inclusion of this radical polymer as an anode‐modifying layer enhanced the open‐circuit voltage and short‐circuit current density values over devices that did not contain an anodic modifier. Importantly, devices fabricated with the PTMA interlayer had performance metrics that were time‐independent over the entire course of multiples days of testing after exposing the OPV devices to ambient conditions. Furthermore, these high performance values were independent of the metal used as the top electrode contact in the inverted OPV devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 311–316  相似文献   

17.
This work reports a dye-sensitized photoelectrochemical cell (DSPEC) that couples redox-mediated light-driven oxidative organic transformations to reductive hydrogen (H2) formation. The DSPEC photoanode consists of a mesoporous anatase TiO2 film on FTO (fluorine-doped tin oxide), sensitized with the thienopyrroledione-based dye AP11 , while H2 was formed at a FTO-Pt cathode. Irradiation of the dye-sensitized photoanode transforms 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to the oxidized TEMPO (TEMPO+), which acts as a chemical oxidant for the conversion of benzyl alcohol. The TEMPO0/+ couple, previously used as redox mediator in DSSC, mediates efficient electron transfer from the organic substrate to the photo-oxidized dye. A DSPEC photoreactor was designed that allows in situ monitoring the reaction progress by infrared spectroscopy and gas chromatography. Sustained light-driven oxidation of benzyl alcohol to benzaldehyde within the DSPEC photoreactor, using of TEMPO as mediator, demonstrated the efficiency of the device, with a photocurrent of 0.4 mA cm−2, approaching quantitative Faradaic efficiency and exhibiting excellent device stability.  相似文献   

18.
Propylene was polymerized at varying trimethylaluminium (TMA) concentration with a homogeneous binary metallocene catalyst system activated by methylaluminoxane (MAO) in an attempt to better understand interactions between active catalyst sites and to clarify the role of the TMA as a chain shuttling agent. TMA‐free polymerization conditions were obtained by chemical treatment of MAO solution with 2,6‐di‐tert‐butyl‐4‐methylphenol (BHT). A binary catalyst system consisting of catalyst precursors diphenylmethyl(cyclopentadienyl)(9‐fluorenyl)zirconium dichloride ( 1 ) producing high Mw syndiotactic polypropylene and rac‐dimethylsilylbis(4‐tert‐butyl‐2‐methyl‐cyclopentadienyl)zirconium dichloride ( 2 ) producing low Mw isotactic polypropylene was investigated. At the studied polymerization conditions, chain shuttling between the active catalysts caused by TMA was confirmed. The chain shuttling reactions caused changes in catalyst activity, molecular weights, melting behavior, and polymer microstructure. We propose that TMA is capable to transfer a growing polymer chain from catalyst 2 to catalyst 1 , and a stereoblock copolymer is formed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1364–1376, 2007  相似文献   

19.
LiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li-O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI-added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr-added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li-O2 batteries.  相似文献   

20.
The radical polymerization behavior of 1‐cyano‐o‐quinodimethane generated by thermal isomerization of 1‐cyanobenzocyclobutene in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxide (TEMPO) and the block copolymerization of the obtained polymer with styrene are described. The radical polymerization of 1‐cyanobenzocyclobutene was carried out in a sealed tube at temperatures ranging from 100 to 150 °C for 24 h in the presence of di‐tert‐butyl peroxide (DTBP) as a radical initiator and two equivalents of TEMPO as a trapping agent of the propagation end radical to obtain hexane‐insoluble polymer above 130 °C. Polymerization at 150 °C with 5 mol % of DTBP in the presence of TEMPO resulted in the polymer having a number‐average molecular weight (Mn ) of 2900 in 63% yield. The structure of the obtained polymer was confirmed as the ring‐opened polymer having a TEMPO unit at the terminal end by 1H NMR, 13C NMR, and IR analyses. Then, block copolymerization of the obtained polymer with styrene was carried out at 140 °C for 72 h to give the corresponding block copolymer in 82% yield, in which the unimodal GPC curve was shifted to a higher molecular weight region. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3434–3439, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号