首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Materials having both magnetic and catalytic properties have shown great potential for practical applications. Here, a reduced graphene oxide/iron oxide/silver nanohybrid (rGO/Fe3O4/Ag NH) ternary material was prepared by green synthesis of Ag on pre‐synthesized rGO/Fe3O4. The as‐prepared rGO/Fe3O4/Ag NH was characterized using Fourier transform infrared spectroscopy, X‐ray diffractometry, Raman spectroscopy, vibrating sample magnetometry, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. rGO sheets were covered with Fe3O4 (8–16 nm) and Ag (18–40 nm) nanoparticles at high densities. The mass percentages were 13.47% (rGO), 62.52% (Fe3O4) and 24.01% (Ag). rGO/Fe3O4/Ag NH exhibited superparamagnetic behavior with high saturated magnetization (29 emu g−1 at 12 kOe), and efficiently catalyzed the reduction of 4‐nitrophenol (4‐NP) with a rate constant of 0.37 min−1, comparable to those of Ag‐based nanocatalysts. The half‐life of 4‐NP in the presence of rGO/Fe3O4/Ag NH was ca 1.86 min. rGO/Fe3O4/Ag NH could be magnetically collected and reused, and retained a high conversion efficiency of 94.4% after the fourth cycle. rGO/Fe3O4/Ag NH could potentially be used as a magnetically recoverable catalyst in the reduction of 4‐NP and environmental remediation.  相似文献   

2.
The Pd nanoparticles (Pd NPs) embedded on magnetically retrievable carboxymethylcellulose/Fe3O4 (Pd0@CMC/Fe3O4) organic/inorganic hybrid were prepared via the conventional simple process. The presence of the hydroxyl and carboxyl groups within the framework of the magnetic hybrid enables the facile preparation and stabilization of Pd NPs in this organic/inorganic hybrid. This hybrid catalyst was very effective in the Suzuki – Miyaura reaction of a variety of aryl halides with arylboronic acid to afford excellent product yields. The catalyst showed good stability and could be easily recovered with an external magnetic field and reused for several times without a significant loss in its catalytic activity. Furthermore, the Pd0@CMC/Fe3O4 hybrid catalyst was fully characterized by UV–Vis, FT–IR, XRD, SEM, EDX, TEM, XPS and TGA techniques. The hot filtration test suggests that a homogeneous mechanism is operative in Suzuki – Miyaura reaction.  相似文献   

3.
通过使用聚乙烯吡咯烷酮作为稳定剂,合成了磁性Pd/Fe3O4纳米颗粒催化剂。对该催化剂进行粉末X射线衍射、透射电子显微镜、感应耦合等离子体和磁性表征。将Pd/Fe3O4催化剂用于Heck反应,检测其催化性能。测试结果表明Pd纳米颗粒负载在Fe3O4纳米颗粒上,而且催化剂的尺寸<20 nm,并在Heck反应中表现了极好的催化性能。此外,催化剂可以通过磁场回收利用, 且催化活性没有显著的降低。  相似文献   

4.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

5.
Low cost, high activity and selectivity, convenient separation, and increased reusability are the main requirements for noble‐metal‐nanocatalyst‐catalyzed reactions. Despite tremendous efforts, developing noble‐metal nanocatalysts to meet the above requirements remains a significant challenge. Here we present a general strategy for the preparation of strongly coupled Fe3O4 and palladium nanoparticles (PdNPs) to graphene sheets by employing polyethyleneimine as the coupling linker. Transmission electron microscopic images show that Pd and Fe3O4 nanoparticles are highly dispersed on the graphene surface, and the mean particle size of Pd is around 3 nm. This nanocatalyst exhibits synergistic catalysis by Pd nanoparticles supported on reduced graphene oxide (rGO) and a tertiary amine of polyethyleneimine (Pd/Fe3O4/PEI/rGO) for the Tsuji–Trost reaction in water and air. For example, the reaction of ethyl acetoacetate with allyl ethyl carbonate afforded the allylated product in more than 99 % isolated yield, and the turnover frequency reached 2200 h?1. The yield of allylated products was 66 % for Pd/rGO without polyethyleneimine. The catalyst could be readily recycled by a magnet and reused more than 30 times without appreciable loss of activity. In addition, only about 7.5 % of Pd species leached off after 20 cycles, thus rendering this catalyst safer for the environment.  相似文献   

6.
A robust, safe and magnetically recoverable palladium catalyst was synthesized by anchoring Pd(II) onto ethylenediaminetetraacetic acid‐coated Fe3O4 (Fe3O4@EDTA) magnetic nanoparticles. The Fe3O4 magnetic nanoparticle‐supported Pd(II)–EDTA complex catalyst thus obtained was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, vibrating sample magnetometry, X‐ray diffraction, and inductively coupled plasma atomic emission and Fourier transform infrared spectroscopies. Fe3O4@EDTA–Pd(II) was screened for the Suzuki reaction and reduction of nitro compounds in water. The Pd content of the catalyst was measured to be 0.28 mmol Pd g?1. In addition, the Fe3O4@EDTA–Pd catalyst can be easily separated and recovered with an external permanent magnet. The anchored solid catalyst can be recycled efficiently and reused five times with only a very slight loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

8.
A novel magnetic methylene-based mesoporous organosilica composite-supported IL/Pd complex (Fe3O4@MePMO-IL/Pd) was synthesized and characterized, and its catalytic performance was investigated. The preparation of the Fe3O4@MePMO composite was achieved through coating of Fe3O4 nanoparticles with a mixture of tetramethoxysilane, bis(triethoxysilyl)methane, and (3-chloropropyl)-trimethoxysilane in the presence of cetyltrimethylammonium bromide surfactant. The Fe3O4@MePMO was then modified with alkyl imidazolium ionic liquid and palladium species to deliver the Fe3O4@MePMO-IL/Pd nanocatalyst. This catalyst was characterized using Fourier transform infrared, thermal gravimetric, wide-angle powder X-ray diffraction, low-angle powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, energy-dispersive X-ray, and nitrogen adsorption–desorption analyses. The Fe3O4@MePMO-IL/Pd was effectively used as a highly recoverable and durable catalyst for the selective oxidative coupling of phenols and 2-naphthols under aerobic conditions.  相似文献   

9.
A simple, efficient and less expensive protocol for the phosphine-free C–C coupling reactions and synthesis of anilines in the presence of 2-aminobenzamide complex of palladium supported on Fe3O4 magnetic nanoparticles (Pd(0)-ABA-Fe3O4) has been reported. The Suzuki reaction was carried out in water or PEG using phenylboronic acid (PhB(OH)2) or sodium tetraphenyl borate (NaBPh4). Pd(0)-ABA-Fe3O4 has been found promising for Heck reaction of butyl acrylate, styrene or acrylonitrile with aryl halides (including Cl, Br and I). Also, Pd(0)-ABA-Fe3O4 has been found as efficient catalyst for the amination of aryl halides using aqueous ammonia. The products have been obtained in short reaction times and high yields. The catalyst was easily separated using an external magnet from the reaction mixture and reused for several runs without significant loss of its catalytic efficiency or palladium leaching. The leaching of catalyst has been examined by hot filtration and ICP-OES technique. The nanomagnetical catalyst was characterized by FTIR, TGA, XRD, VSM, TEM, SEM, EDS, DLS and ICP-OES techniques.  相似文献   

10.
An efficient procedure based on arginine‐modified Fe3O4@carbon magnetic nanoparticles (FCA MNPs) with highly dispersed copper nanoparticles (Cu NPs) and 92.8 ppm of Pd is reported for room temperature Suzuki reaction. For enhancing the activity of this Cu‐based heterogeneous catalyst, special arginine amino acid as a ligand with high content of heteroatoms was immobilized onto the Fe3O4@carbon MNPs to increase the electron density. Cu(II) ions were then loaded on the surface of the FCA MNPs and reduced to achieve uniformly dispersed Cu NPs. An aqueous mixture of metal hydroxides such as KOH, Ba(OH)2, Ca(OH)2, Mg(OH)2 as a green, non‐toxic and basic medium was used for the Suzuki reaction at room temperature. This catalyst could also be recovered and reused with no loss of activity over six successful runs.  相似文献   

11.
In this paper, a simple route for palladium (Pd) nanoparticles attached to the surface of hollow magnetic Fe3O4/P (GMA‐DVB)‐polyethyleneimine (PEI) microspheres was established. Due to the large amount of imidogen groups and tertiary amine groups presenting in the PEI, Pd2+ ions could be anchored to the support by complexation with a polyfunctional organic ligand. Thereafter, a magnetic Pd catalyst having a high loading amount and good dispersibility was obtained by reducing Pd2+ ions. Afterwards, the prepared catalyst was characterized by TEM, SEM, FTIR, XRD, TGA, VSM, and UV–vis in detail. Ultimately, their catalytic activity was evaluated using the reduction of 4‐nitrophenol (4‐NP). Research showed that the Fe3O4/P (GMA‐DVB)‐PEI/Pd catalyst possessed high catalytic performances for the reduction of 4‐NP with a conversion rate of 98.43% within 540 s. Furthermore, the catalyst could be easily recovered and reused at least for nine successive cycles.  相似文献   

12.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

13.
The simple preparation of catalysts with superior catalytic activity and good reusability is highly desirable. Herein, we report a novel strategy to construct reduced graphene oxide (rGO)/Pd–Fe3O4@polypyrrole (PPy) catalysts with Pd and Fe3O4 nanoparticles anchored on a rGO nanosheet surface and wrapped in a PPy shell. The synthesis and assembly of both the Pd and Fe3O4 nanoparticles, the preparation of the PPy layer, and the reduction of graphene oxide nanosheets were finished in one step. In the system, the PPy layer not only prevented aggregation of Pd and Fe3O4 nanoparticles, but also generated a synergistic effect with precursor Pd2+ ions, which led to a high dispersity of as‐prepared Pd nanoparticles. Although the procedure was simplified to one step, the catalytic activity and reusability were not sacrificed. In the reduction of 4‐nitrophenol, their catalytic performance was better than that in recent reports. Moreover, the catalysts showed good reusability owing to their magnetic properties.  相似文献   

14.
New Pd(Pt) catalysts have been fabricated by assembling multicomponents of Fe3O4 and CeO2/Pd(Pt) on the surface of reduced graphene oxide (RGO) nanosheets in layers. The as‐obtained Pd(Pt) catalysts exhibit extremely high catalytic activity in the selective hydrogenation reaction of nitrobenzene. Owing to the presence of Fe3O4, the catalysts can be easily recycled from the catalytic system through magnetic separation. Their high activity, stability, and magnetic recyclability make the as‐obtained hybrids very promising as catalysts in catalytic applications. Compared to other traditional multishell magnetic catalysts that were prepared by means of layer‐by‐layer technology, our process is much more facile and more easily controlled.  相似文献   

15.
可控粒径纳米Fe_3O_4的制备及其磁性研究   总被引:2,自引:0,他引:2  
本文用空气氧化法,在可见光作用下,添加配合剂(EDTA、柠檬酸、酒石酸、谷氨酸)在室温进行了不同粒径纳米Fe3O4的制备及其磁性能研究。结果表明:在可见光作用下,随EDTA、柠檬酸、酒石酸、谷氨酸等配合剂的添加,得到纳米Fe3O4的粒径有所减小、分散性有所提高;配合剂及可见光共存时,体系反应速率得到提高,高的反应速率使纳米Fe3O4晶粒减小;控制适当的光照度和添加剂的量,室温可得到11.8~29.6nm的Fe3O4颗粒。不同粒径纳米Fe3O4分别呈现出超顺磁性、铁磁性特征。  相似文献   

16.
A convenient method for the synthesis of magnetically recyclable palladium nanoparticles (Fe3O4‐Pd) is described. The catalytic application of the Fe3O4‐Pd nanoparticles was explored for the first time in oxidative coupling between amides and olefins. p‐Toluenesulfonic acid plays a significant role in the oxidative amidation reaction. The reaction proceeds at room temperature, resulting in (Z)‐enamides under ambient air in the absence of co‐catalyst and ligand. The superparamagnetic nature of Fe3O4‐Pd facilitates easy, quantitative recovery of the catalyst from a reaction mixture, and it can be reused for up to three consecutive cycles with a slight decrease in catalytic activity.  相似文献   

17.
The catalytic oxidation of methane was studied over calcined and reduced Pt–Pd/γ-Al2O3 catalysts, in the presence and the absence of SO2 in the CH4–O2 reaction feed. The effect of sulfation (SO2 + O2 for 4 h at 500 °C) was also studied on the catalyst resistance to deactivation by sulfur poisoning. Sulfating the calcined Pt–Pd/γ-Al2O3 catalysts resulted in a strong deactivation for the CH4–O2 reaction. However, the catalytic activity of the reduced-sulfated Pt–Pd/γ-Al2O3 catalyst for CH4–O2 reaction remained rather unaffected in the presence and in the absence of SO2 in the reaction feed. XPS analysis revealed, over reduced-sulfated Pt–Pd/γ-Al2O3 catalysts, the presence of Pt(0) metallic surface species on which SO2 interactions may be faster related to Pd surface species. The presence of Pt(0) may be necessary to prevent the interactions between SO2 and Pd surface species. Long time catalytic tests showed that the activity of a reduced Pt–Pd/γ-Al2O3 catalysts for CH4–O2 reactions remained rather unaffected despite the presence of SO2 in the reaction feed.  相似文献   

18.
We report a simple process for the synthesis of Fe3O4@SiO2/APTMS (APTMS = 3‐aminopropyltrimethoxysilane) core–shell nanocatalyst support. The new nanocatalyst was prepared by stabilization of Pd(cdha)2 (cdha = bis(2‐chloro‐3,4‐dihydroxyacetophenone)) on the surface of the Fe3O4@SiO2/APTMS support. The structure and composition of this catalyst were characterized using various techniques. An efficient method was developed for the synthesis of a wide variety of biaryl compounds via fluoride‐free Hiyama cross‐coupling reactions of aryl halides with arylsiloxane, with Fe3O4@SiO2/APTMS/Pd(cdha)2 as the catalyst under reaction conditions. This methodology can be performed at 100°C through a simple one‐pot operation using in situ generated palladium nanoparticles. High catalytic activity, quick separation of catalyst from products using an external magnetic field and use of water as green solvent are attributes of this protocol.  相似文献   

19.
We describe the synthesis of a novel Fe3O4/amidoxime (AO)/Pd nanocatalyst by grafting of AO groups on Fe3O4 nanoparticles and subsequent deposition of Pd nanoparticles. Prior to grafting of AO, the 2‐cyanoethyl‐functionalized Fe3O4 nanoparticles prepared through combining 2‐cyanoethyltriethoxysilane and Fe3O4 were treated with hydroxylamine. The AO‐grafted Fe3O4 nanoparticles were then used as a platform for the deposition of Pd nanoparticles. The catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, wavelength‐ and energy‐dispersive X‐ray spectroscopies and inductively coupled plasma analysis. Fe3O4/AO/Pd is novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Supported palladium catalyst (Pd/Fe3O4@SiO2) was easily prepared by supporting PdCl2 on silica‐coated magnetic nanoparticles Fe3O4 in ethylene glycol. The as‐prepared sample was characterized by infrared spectroscopy (IR), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS). The formation of active specie Pd(0) was confirmed by XRD and XPS, and the Pd loading for the fresh and recovered catalyst was determined by atomic absorption spectroscopy (AAS). Pd/Fe3O4@SiO2 was employed for the synthesis of biphenyl derivatives via Suzuki reaction. In terms of the yield of biphenyl, the supported catalyst displayed nearly equal catalytic performance to that of homologous PdCl2 under microwave irradiation for 30 min but higher than that obtained by traditional heating method for 12 h. The catalytic performance of Pd/Fe3O4@SiO2 for Suzuki reactions involving various aryl halides and arylboronic acids were also examined. Impressive yield of biphenyl at 68.2% was obtained even in the presence of unreactive aryl chlorides. Pd/Fe3O4@SiO2 was recovered by a permanent magnet and directly reused in the next run, and no obvious deactivation was observed for up to 6 times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号