首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene‐based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy‐dispersive X‐ray spectroscopy (SEM‐EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen‐containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom‐side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene‐based devices.  相似文献   

2.
3.
A very facile and efficient protocol for the covalent patterning and properties tuning of graphene is reported. Highly reactive fluorine radicals were added to confined regions of graphene directed by laser writing on graphene coated with 1-fluoro-3,3-dimethylbenziodoxole. This process allows for the realization of exquisite patterns on graphene with resolutions down to 200 nm. The degree of functionalization, ranging from the unfunctionalized graphene to extremely high functionalized graphene, can be precisely tuned by controlling the laser irradiation time. Subsequent substitution of the initially patterned fluorine atoms afforded an unprecedented graphene nanostructure bearing thiophene groups. This substitution led to a complete switch of both the electronic structure and the polarization within the patterned graphene regions. This approach paves the way towards the precise modulation of the structure and properties of nanostructured graphene.  相似文献   

4.
Patterned graphene‐functionalization with a tunable degree of functionalization can tailor the properties of graphene. Here, we present a new reductive functionalization approach combined with lithography rendering patterned graphene‐functionalization easily accessible. Two types of covalent patterning of graphene were prepared and their structures were unambiguously characterized by statistical Raman spectroscopy together with scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM‐EDS). The reversible defunctionalization processes, as revealed by temperature‐dependent Raman spectroscopy, enable the possibility to accurately modulate the degree of functionalization by annealing. This allows for the management of chemical information through complete write/store/erase cycles. Based on our strategy, controllable and efficient patterning graphene‐functionalization is no longer a challenge and facilitates the development of graphene‐based devices.  相似文献   

5.
Fluorination of graphene opens up a bandgap, which creates opportunities for optoelectronics, and also paves the way for the creation of extremely thin insulating layers, which can be important for applications in devices. However, in spite of many interesting features offered by, for example, unequally doped layers in multilayered systems, most of the work has concerned the fluorination of graphene monolayers. Here, the fluorination process of graphene bilayers is investigated through high‐resolution Raman mapping followed by analysis of more than 10 000 spectra of bilayer graphene. Isotopically labeled bilayers are used, allowing each individual layer in bilayer graphene to be addressed unambiguously. The fluorinated graphene is prepared through exposure to XeF2. Monolayer graphene is found to be significantly more sensitive to fluorination than bilayer graphene. Through comparison of the D/G area ratio and the position of the G band for turbostratic and Bernal stacked (AB) bilayers, it is found that the fluorination process is more effective for turbostratic than for AB‐stacked bilayer graphene. The fluorination changes the electronic structure similarly for the top and bottom layers in turbostratic bilayers. However, the top layer is more sensitive than the bottom layer in AB‐stacked bilayers.  相似文献   

6.
7.
田圆  赵倩莹  胡靖  周辰  缪灵  江建军 《化学进展》2012,24(4):512-522
大面积高质量石墨烯的制备对石墨烯电子特性及石墨烯基纳器件相关研究有重要意义。本文综述了近几年来衬底上制备石墨烯的相关实验以及衬底与石墨烯相互作用研究的重要进展。目前,采用化学气相沉积、外延生长等方法可在衬底表面上制备出较大面积、高质量的石墨烯材料。衬底与石墨烯相互作用和界面间晶格匹配、原子成键及电荷转移等密切相关,其对吸附石墨烯的几何结构、能带结构及电子特性等产生明显影响。实验与理论计算的结合可望加深衬底与石墨烯作用机理的理解,指导衬底上石墨烯制备及改性的进一步研究。  相似文献   

8.
The present study aims at the surface functionalization of cross-linked natural rubber films by direct fluorination routes involving the treatment of elastomer surfaces with gaseous fluorine and its mixtures. Two different fluorination methods were evaluated to attach fluorine moieties on polyisoprene surfaces. On the one hand the fluorination was carried out with mixtures of fluorine with inert gas yielding highly non-polar surfaces. On the other hand polar surface properties were obtained in the presence of fluorine and oxygen in the reaction gas mixture (oxy-fluorination). The functionalized surfaces were characterized by means of FTIR-ATR spectroscopy and contact angle measurements. Optical microscopy was used to assess the surface morphology of the modified elastomer films and the depth of fluorination was investigated with SEM-EDX. In addition, the influence of the surface fluorination on the mechanical properties, aging stability and stability against high energy radiation (e.g. gamma-rays) of the functionalized rubber materials were determined by tensile tests.  相似文献   

9.
Spatially resolved functionalization of 2D materials is highly demanded but very challenging to achieve. The chemical patterning is typically tackled by preventing contact between the reagent and material, which brings various accompanying challenges. Photochemical transformation on the other hand inherently provides remote high spatiotemporal resolution using the cleanest reagent—a photon. Herein, we combine two competing reactions on a graphene substrate to create functionalization patterns on a micrometer scale via the Mitsunobu reaction. The mild reaction conditions allow introduction of covalently dynamic linkages, which can serve as reversible labels for surface‐ or graphene‐enhanced Raman spectroscopy characterization of the patterns prepared. The proposed methodology thus provides a pathway for local introduction of arbitrary functional groups on graphene.  相似文献   

10.
石墨烯和氧化石墨烯由于特殊的电子、光学、力学性能已成为当今科学研究的热点.重点综述了近年来石墨烯和氧化石墨烯的表面功能化改性研究进展.首先介绍了石墨烯、氧化石墨烯的基本结构与性质.然后将表面功能化分为非共价键结合改性、共价键结合改性和元素掺杂改性.非共价键结合的功能化改性分为四类:π-π键相互作用、氢键作用、离子键作用以及静电作用.共价键结合的功能化改性分为四类:碳骨架功能化、羟基功能化、羧基功能化和环氧基功能化.元素掺杂改性分为N、B、P等不同元素的掺杂功能化.总结了石墨烯、氧化石墨烯基体与改性分子的相互作用和反应类型,以及改性产物的性能与应用.最后对石墨烯和氧化石墨烯在表面功能化改性方面的发展前景作了展望和预测.  相似文献   

11.
Nonreactive additives are widely applied to enhance polymer properties but can leach out of the material over time. In this work, two essentially different fluorinated additives bearing a triazolinedione moiety are synthesized and grafted on several polydiene backbones (acrylonitrile–butadiene–styrene, styrene–butadiene, and styrene–isoprene–styrene (SIS) copolymers), either by dip‐coating or by reaction in solution. The resulting polymers are analyzed by contact angle goniometry, size exclusion chromatography, and NMR, infrared, and X‐ray photoelectron spectroscopy. Independent of the modification procedure, the fluorophilic perfluoroalkyl additive is found at the material surface, thereby yielding a more hydrophobic surface. For SIS thermoplastic elastomers, for example, contact angles up to 125° can be obtained.

  相似文献   


12.
The development of an efficient method to patterning 2D MoS2 into a desired topographic structure is of particular importance to bridge the way towards the ultimate device. Herein, we demonstrate a patterning strategy by combining the electron beam lithography with the surface covalent functionalization. This strategy allows us to generate delicate MoS2 ribbon patterns with a minimum feature size of 2 μm in a high throughput rate. The patterned monolayer MoS2 domain consists of a spatially well-defined heterophase homojunction and alternately distributed surface characteristics, which holds great interest for further exploration of MoS2 based devices.  相似文献   

13.
The utilization of grown or deposited graphene on solid substrates offers key benefits for functionalization processes, but especially to attain structures with a high level of control for electronics and “smart” materials. In this review, we will initially focus on the nature and properties of graphene on substrates, based on the method of preparation. We will then analyze the most relevant literature on the functionalization of graphene on substrates. In particular, we will comparatively discuss radical reactions, cycloadditions, halogenations, hydrogenations, and oxidations. We will especially address the question of how the reactivity of graphene is affected by its morphology (i.e., number of layers, defects, substrate, curvature, etc.).  相似文献   

14.
Graphene is the best‐studied 2D material available. However, its production is still challenging and the quality depends on the preparation procedure. Now, more than a decade after the outstanding experiments conducted on graphene, the most successful wet‐chemical approach to graphene and functionalized graphene is based on the oxidation of graphite. Graphene oxide has been known for more than a century; however, the structure bears variable large amounts of lattice defects that render the development of a controlled chemistry impossible. The controlled oxo‐functionalization of graphene avoids the formation of defects within the σ‐framework of carbon atoms, making the synthesis of specific molecular architectures possible. The scope of this review is to introduce the field of oxo‐functionalizing graphene. In particular, the differences between GO and oxo‐functionalized graphene are described in detail. Moreover analytical methods that allow determining lattice defects and functional groups are introduced followed by summarizing the current state of controlled oxo‐functionalization of graphene.  相似文献   

15.
The selective functionalization of graphene edges is driven by the chemical reactivity of its carbon atoms. The chemical reactivity of an edge, as an interruption of the honeycomb lattice of graphene, differs from the relative inertness of the basal plane. In fact, the unsaturation of the pz orbitals and the break of the π conjugation on an edge increase the energy of the electrons at the edge sites, leading to specific chemical reactivity and electronic properties. Given the relevance of the chemistry at the edges in many aspects of graphene, the present Review investigates the processes and mechanisms that drive the chemical functionalization of graphene at the edges. Emphasis is given to the selective chemical functionalization of graphene edges from theoretical and experimental perspectives, with a particular focus on the characterization tools available to investigate the chemistry of graphene at the edge.  相似文献   

16.
Graphene is turning out to be the material that will effectively kick‐start a new era for nanotechnology. The impressive properties of this atom‐thick carbon layer are taking shape and form with early reports of successful applications based on it. The turning point for this material will be its low‐cost mass production. In this report a chemist’s perspective on the production methods for graphene and the subsequent functionalization processes is discussed.  相似文献   

17.
Pyridine features prominently in pharmaceuticals and drug leads, and methods to selectively manipulate pyridine basicity or metabolic stability are highly sought after. A robust, metal‐free direct fluorination of unactivated pyridylic C?H bonds was developed. This convenient reaction shows high functional‐group tolerance and offers complimentary selectivity to existing C?H fluorination strategies. Importantly, this late‐stage pyridylic C?H fluorination provides opportunities to rationally modulate the basicity, lipophilicity, and metabolic stability of alkylpyridine drugs.  相似文献   

18.
We herein address the problem of polymorph selection by introducing a general and straightforward concept based on their ordering. We demonstrated the concept by the ordered patterning of four compounds capable of forming different polymorphs when deposited on technologically relevant surfaces. Our approach exploits the fact that, when the growth of a crystalline material is confined within sufficiently small cavities, only one of the possible polymorphs is generated. We verify our method by utilizing several model compounds to fabricate micrometric “logic patterns” in which each of the printed pixels is easily identifiable as comprising only one polymorph and can be individually accessed for further operations.  相似文献   

19.
石墨烯的功能化及其相关应用   总被引:22,自引:0,他引:22  
黄毅  陈永胜 《中国科学B辑》2009,39(9):887-896
石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号