首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO2‐responsive spin‐state conversion between high‐spin (HS) and low‐spin (LS) states at room temperature was achieved in a monomeric cobalt(II) complex. A neutral cobalt(II) complex, [CoII(COO‐terpy)2]?4 H2O ( 1?4 H2O ), stably formed cavities generated via π–π stacking motifs and hydrogen bond networks, resulting in the accommodation of four water molecules. Crystalline 1?4 H2O transformed to solvent‐free 1 without loss of porosity by heating to 420 K. Compound 1 exhibited a selective CO2 adsorption via a gate‐open type of the structural modification. Furthermore, the HS/LS transition temperature (T1/2) was able to be tuned by the CO2 pressure over a wide temperature range. Unlike 1 exhibits the HS state at 290 K, the CO2‐accomodated form 1?CO2 (P =110 kPa) was stabilized in the LS state at 290 K, probably caused by a chemical pressure effect by CO2 accommodation, which provides reversible spin‐state conversion by introducing/evacuating CO2 gas into/from 1 .  相似文献   

2.
A three‐coordinate low‐spin cobalt(I) complex generated using a pincer ligand is presented. Since an empty orbital is sterically exposed at the site trans to the N donor of an acridane moiety, the cobalt(I) center accepts the coordination of various donors such as H2 and PhSiH3 revealing σ‐complex formation. At this low‐spin cobalt(I) site, homolysis of H–H and Si?H bonds preferentially occurs via bimolecular hydrogen atom transfer instead of two‐electron oxidative addition. When the resulting CoII–H species was exposed to N2, H2 evolution readily occurs at ambient conditions. These results suggest single‐electron processes are favored at the structurally rigidified cobalt center.  相似文献   

3.
Hole or electron doping of phases prepared by topochemical reactions (e.g. anion deintercalation or anion-exchange) is extremely challenging as these low-temperature conversion reactions are typically very sensitive to the electron counts of precursor phases. Herein we report the successful hole and electron doping of the transition-metal oxyhydride LaSr3NiRuO4H4 by first preparing precursors in the range LaxSr4−xNiRuO8 0.5<x<1.4 and then converting into the corresponding LaxSr4−xNiRuO4H4 phases. This is particularly noteworthy as the (Ni/Ru)H2 sheets in the LaxSr4−xNiRuO4H4 phases are structurally analogous to the CuO2 sheets in cuprate superconductors and hole doping (Ni1+/2+, Ru2+) or electron doping (Ni2+, Ru1+/2+) yields materials with partial occupancy in Ni/Ru –H 1s bands which are analogous to the partially occupied Cu –O 2p bands present in the CuO2 sheets of doped superconducting cuprates.  相似文献   

4.
The thermodynamic state of H2 adsorbed on Pt in the aqueous phase was determined by kinetic analysis of H2 reacting with D2O to HDO, HD, and D2, and by DFT‐based ab initio molecular dynamics simulations of H2 adsorption on Pt(111), Pt(110), and Pt nanoparticles. Dissociative adsorption of H2 on Pt is significantly weakened in the aqueous phase compared to adsorption at gas–solid interfaces. Water destabilizes the adsorbed H atoms, decreasing the heat of adsorption by 19–22 kJ while inducing an additional entropy loss of 50–70 J K?1. Upon dissociative adsorption of H2, the average distance of water from the Pt surface increases and the liquid adopts a structure that is more ordered than before close to the Pt surface, which limits the translation mobility of the adsorbed H atoms. The presence of hydrated hydronium ions next to the Pt surface further lowers the H?Pt bond strength.  相似文献   

5.
Bistable spin-crossover (SCO) complexes that undergo abrupt and hysteretic (ΔT1/2) spin-state switching are desirable for molecule-based switching and memory applications. In this study, we report on structural facets governing hysteretic SCO in a set of iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) (bpp) complexes – [Fe(bpp−COOEt)2](X)2 ⋅ CH3NO2 (X=ClO4, 1 ; X=BF4, 2 ). Stable spin-state switching – T1/2=288 K; ΔT1/2=62 K – is observed for 1 , whereas 2 undergoes above-room-temperature lattice-solvent content-dependent SCO – T1/2=331 K; ΔT1/2=43 K. Variable-temperature single-crystal X-ray diffraction studies of the complexes revealed pronounced molecular reorganizations – from the Jahn-Teller-distorted HS state to the less distorted LS state – and conformation switching of the ethyl group of the COOEt substituent upon SCO. Consequently, we propose that the large structural reorganizations rendered SCO hysteretic in 1 and 2 . Such insights shedding light on the molecular origin of thermal hysteresis might enable the design of technologically relevant molecule-based switching and memory elements.  相似文献   

6.
Complex [PtMe2(PMe2Ar )] ( 1 ), which contains a tethered terphenyl phosphine (Ar =2,6‐(2,6‐i Pr2C6H3)2C6H3), reacts with [H(Et2O)2]BArF (BArF=B[3,5‐(CF3)2C6H3]4) to give the solvent (S) complex [PtMe(S)(PMe2Ar )]+ ( 2⋅S ). Although the solvent molecule is easily displaced by a Lewis base (e.g., CO or C2H4) to afford the corresponding adducts, treatment of 2⋅S with C2H2 yielded instead the allyl complex [Pt(η3‐C3H5)(PMe2Ar )]+ ( 6 ) via the alkyne intermediate [PtMe(η2‐C2H2)(PMe2Ar )]+ ( 5 ). Deuteration experiments with C2D2, and kinetic and theoretical investigations demonstrated that the conversion of 5 into 6 involves a PtII‐promoted HC≡CH to :C=CH2 tautomerization in preference over acetylene migratory insertion into the Pt−Me bond.  相似文献   

7.
4-(tert-Butylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L) was obtained in low yield from a one-pot reaction of 2,4,6-trifluoropyridine with 2-methylpropane-2-thiolate and sodium pyrazolate in a 1:1:2 ratio. The materials [FeL2][BF4]2⋅solv ( 1[BF4]2 ⋅solv) and [FeL2][ClO4]2⋅solv ( 1[ClO4]2 ⋅solv; solv=MeNO2, MeCN or Me2CO) exhibit a variety of structures and spin-state behaviors including thermal spin-crossover (SCO). Solvent loss on heating 1[BF4]2x MeNO2 (x≈2.3) occurs in two steps. The intermediate phase exhibits hysteretic SCO around 250 K, involving a “reverse-SCO” step in its warming cycle at a scan rate of 5 K min−1. The reverse-SCO is not observed in a slower 1 K min−1 measurement, however, confirming its kinetic nature. The final product [FeL2][BF4]2⋅0.75 MeNO2 was crystallographically characterized, and shows abrupt but incomplete SCO at 172 K which correlates with disorder of an L ligand. The asymmetric unit of 1[BF4]2y Me2CO (y≈1.6) contains five unique complex molecules, four of which undergo gradual SCO in at least two discrete steps. Low-spin 1[ClO4]2 ⋅0.5 Me2CO is not isostructural with its BF4 congener, and undergoes single-crystal-to-single-crystal solvent loss with a tripling of the crystallographic unit cell volume, while retaining the P space group. Three other solvate salts undergo gradual thermal SCO. Two of these are isomorphous at room temperature, but transform to different low-temperature phases when the materials are fully low-spin.  相似文献   

8.
A precious‐metal‐ and Cd‐free photocatalyst system for efficient H2 evolution from aqueous protons with a performance comparable to Cd‐based quantum dots is presented. Rod‐shaped ZnSe nanocrystals (nanorods, NRs) with a Ni(BF4)2 co‐catalyst suspended in aqueous ascorbic acid evolve H2 with an activity up to 54±2 mmol gZnSe?1 h?1 and a quantum yield of 50±4 % (λ=400 nm) under visible light illumination (AM 1.5G, 100 mW cm?2, λ>400 nm). Under simulated full‐spectrum solar irradiation (AM 1.5G, 100 mW cm?2), up to 149±22 mmol gZnSe?1 h?1 is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co‐catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite CuCrO2 photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on CuCrO2 generate photocurrents of around ?10 μA cm?2 in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state‐of‐the‐art light absorber for photocatalytic and photoelectrochemical H2 generation.  相似文献   

9.
The efficient ethanol electrosynthesis from CO2 is challenging with low selectivity at high CO2 electrolysis rates, due to the competition with H2 and other reduction products. Copper-based bimetallic electrocatalysts are potential candidates for the CO2-to-ethanol conversion, but the secondary metal has mainly been focused on active components (such as Ag, Sn) for CO2 electroreduction, which also promote selectivity of ethylene or other reduction products rather than ethanol. Limited attention has been given to alkali-earth metals due to their inherently active chemical property. Herein, we rationally synthesized a (111) facet-oriented nano Cu2Mg (designated as Cu2Mg(111)) intermetallic compound with high-density ordered Cu3-Mg sites. The in situ Raman spectroscopy and density function theory calculations revealed that the Cu3 -Mg + active sites allowed to increase *CO surface coverage, decrease reaction energy for *CO−CO coupling, and stabilize *CHCHOH intermediates, thus promoting the ethanol formation pathway. The Cu2Mg(111) catalyst exhibited a high FEC2H5OH of 76.2±4.8 % at 600 mA⋅cm−2, and a peak value of |jC2H5OH| of 720±34 mA⋅cm−2, almost 4 times of that using conventional Cu2Mg with (311) facets, comparable to the best reported values for the CO2-to-ethanol electroreduction.  相似文献   

10.
A CO2-mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub-nanometer Pd–Mn clusters were encaged within silicalite-1 (S-1) zeolites by a ligand-protected method under direct hydrothermal conditions. The obtained zeolite-encaged metallic nanocatalysts exhibited extraordinary catalytic activity and durability in both CO2 hydrogenation into formate and formic acid (FA) dehydrogenation back to CO2 and hydrogen. Thanks to the formation of ultrasmall metal clusters and the synergic effect of bimetallic components, the PdMn0.6@S-1 catalyst afforded a formate generation rate of 2151 molformate molPd−1 h−1 at 353 K, and an initial turnover frequency of 6860 mol molPd−1 h−1 for CO-free FA decomposition at 333 K without any additive. Both values represent the top levels among state-of-the-art heterogeneous catalysts under similar conditions. This work demonstrates that zeolite-encaged metallic catalysts hold great promise to realize CO2-mediated hydrogen energy cycles in the future that feature fast charge and release kinetics.  相似文献   

11.
The bicyclic amido-substituted silicon(I) ring compound Si4{N(SiMe3)Mes}4 2 (Mes=Mesityl=2,4,6-Me3C6H2) features enhanced zwitterionic character and different reactivity from the analogous compound Si4{N(SiMe3)Dipp}4 1 (Dipp=2,6-iPr2C6H3) due to the smaller mesityl substituents. In a reaction with the N-heterocyclic carbene NHC (1,3,4,5-tetramethyl-imidazol-2-ylidene), we observe adduct formation to give Si4{N(SiMe3)Mes}4 ⋅ NHC ( 3 ). This adduct reacts further with the Lewis acid BH3 to yield the Lewis acid–base complex Si4{N(SiMe3)Mes}4 ⋅ NHC ⋅ BH3 ( 4 ). Coordination of AlBr3 to 2 leads to the adduct 5 . Calculated proton affinities and fluoride ion affinities reveal highly Lewis basic and very weak Lewis acidic character of the low-valent silicon atoms in 1 and 2 . This is confirmed by protonation of 1 and 2 with Brookharts acid yielding 6 and 7 . Reaction with diphenylacetylene only occurs at 111 °C with 2 in toluene and is accompanied by fragmentation of 2 to afford the silacyclopropene 8 and the trisilanorbornadiene species 9 .  相似文献   

12.
The discovery of superconductivity in H3S at 203 K marked an advance towards room-temperature superconductivity and demonstrated the potential of H-dominated compounds to possess a high critical temperature (Tc). There have been numerous reports of the H-S system over the last five years, but important questions remain unanswered. It is crucial to verify whether the Tc was determined correctly for samples prepared from compressed H2S, since they are inevitably contaminated with H-depleted byproducts. Here, we prepare stoichiometric H3S by direct in situ synthesis from elemental S and excess H2. The Im m phase of D3S samples exhibits a Tc significantly higher than previously reported values (ca. 150 K), reaching a maximum Tc of 166 K at 157 GPa. Furthermore, we confirm that the sharp decrease in Tc below 150 GPa is accompanied by continuous rhombohedral structural distortions and demonstrate that the Cccm phase is non-metallic, with molecular H2 units in the crystal structure.  相似文献   

13.
Integration of metal-organic frameworks (MOFs) as components of advanced electronic devices is at a very early phase of development and the fundamental issues related to their crystal growth on conductive substrate need to be addressed. Herein, we report on the structural characterization of a newly synthesized Sr-based MOF {[Sr(2,5-Pzdc)(H2O)2] ⋅ 3 H2O}n ( 1 ) and the uniform crystal growth of compound 1 on a conducting glass (fluorine doped tin oxide (FTO)) substrate using electrochemical deposition techniques. The Sr-based MOF 1 was synthesized by the reaction of Sr(NO3)2 with 2,5-pyrazinedicarboxylic acid dihydrate (2,5-Pzdc) under solvothermal conditions. A single-crystal X-ray diffraction analysis revealed that 1 has a 3D structure and crystallizes in the triclinic P space group. In addition, the uniform crystal growth of this MOF on a conducting glass (FTO) substrate was successfully achieved using electrochemical deposition techniques. Only a handful of MOFs have been reposed to grown on conductive surfaces, which makes this study an important focal point for future research on the applications of MOF-based devices in microelectronics.  相似文献   

14.
The preparation of novel technetium oxides, their characterization and the general investigation of technetium chemistry are of significant importance, since fundamental research has so far mainly focused on the group homologues. Whereas the structure chemistry of technetium in strongly oxidizing media is dominated by the anion, our recent investigation yielded the new anion. Brown single crystals of Ba[TcO3N] were obtained under hydrothermal conditions starting from Ba(OH)2 ⋅ 8H2O and NH4[TcO4] at 200 °C. crystallizes in the monoclinic crystal system with the space group P21/n (a=7.2159(4) Å, b=7.8536(5) Å, c=7.4931(4) Å and β=104.279(2)°). The crystal structure of consists of isolated tetrahedra, which are surrounded by Ba2+ cations. XANES measurements complement the oxidation state +VII for technetium and Raman spectroscopic experiments on Ba[TcO3N] single crystals exhibit characteristic Tc−O and Tc−N vibrational modes.  相似文献   

15.
Decomposition of formic acid (HCO2H) proceeds via three unimolecular channels: dehydration, decarboxylation, and dissociation, the latter expected to be of minor contribution to the overall kinetics. In addition, despite the similar values reported for the individual activation energies for the dehydration and decarboxylation reactions, experimental works have shown that the former is dominant in the reaction mechanism. These reactions show pressure-dependent rate coefficients, and the high-pressure condition is not yet verified at atmospheric pressure. This work aims to investigate the influence of temperature and pressure on the rate coefficients. Hence, theoretical calculations at the CCSD(T)/CBS level have been performed to accurately describe the unimolecular reaction and Rice-Ramsperger-Kassel-Marcus (RRKM) rate coefficients have been calculated and integrated for the prediction of k(T,P) rate coefficients, adopting both strong and weak collision models, over the intervals 0.5-10 atm and 298-2200 K. Our results suggest that the isomerization path is important and explains the preference for the (CO + H2O) channel. Rate coefficients for the (CO2 + H2) and (CO + H2O) formations are given, in s−1, as exp(−34404/T) and exp(−33785/T), respectively. The dissociation limit of 107.29 kcal mol–1, with respect the Z-HCO2H conformer, leading to OH + HCO, via a barrierless potential curve, with rate coefficients, in s−1, expressed as kHCO+OH(T) = 1.68 × 1017 exp(−56018/T). Temperature and pressure dependence for the HCO + OH → CO2 + H2 and HCO + OH → CO + H2O reactions have also been estimated.  相似文献   

16.
Reaction of Cu(ClO4)2 ⋅ 6 H2O with a tripodal 2N2O ligand, H2Me2NL, having a p-(dimethylamino)phenol moiety, in CH2Cl2/MeOH (1:1 v/v) under basic conditions under an inert gas atmosphere gave [Cu(Me2NL)(H2O)] ( 1 ). The same reaction carried out under aerobic conditions gave [Cu(Me2NL)(MeOH)]ClO4 ( 2 ), which could be obtained also from the isolated complex 1 by reaction with O2 in CH2Cl2/MeOH. The X-ray crystal structures of 1 and 2 revealed similar square-pyramidal structures, but 2 showed the (dimethylamino)phenoxyl radical features. Complex 1 exhibits characteristic CuII EPR signals of the d ground state in CH2Cl2/MeOH at 77 K, whereas 2 is EPR-silent. The EPR and X-ray absorption fine structure (XAFS) results suggest that 2 is assigned to the CuII–(dimethylamino)phenoxyl radical. However, complex 1 showed different features in the absence of MeOH. The EPR spectrum of the CH2Cl2 solution of 1 exhibits distortion from the d ground state and a temperature-dependent equilibrium between the CuII–(dimethylamino)phenolate and the CuI–(dimethylamino)phenoxyl radical. From these results, CuII–phenoxyl radical complex 2 is concluded to be formed by the reaction of 1 with O2 via the CuI–phenoxyl radical species.  相似文献   

17.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   

18.
The prototypical reactivity profiles of transition metal dihydrogen complexes (M-H2) are well-characterized with respect to oxidative addition (to afford dihydrides, M(H)2) and as acids, heterolytically delivering H+ to a base and H to the metal. In the course of this study we explored plausible alternative pathways for H2 activation, namely direct activation through H-atom or hydride transfer from the σ-H2 adducts. To this end, we describe herein the reactivity of an isostructural pair of a neutral S= and an anionic S=0 Co-H2 adduct, both supported by a trisphosphine borane ligand (P3B). The thermally stable metalloradical, (P3B)Co(H2), serves as a competent precursor for hydrogen atom transfer to tBu3ArO. What is more, its anionic derivative, the dihydrogen complex [(P3B)Co(H2)]1−, is a competent precursor for hydride transfer to BEt3, establishing its remarkable hydricity. The latter finding is essentially without precedent among the vast number of M-H2 complexes known.  相似文献   

19.
8-Oxoguanosine is the most common oxidatively generated base damage and pairs with complementary cytidine within duplex DNA. The 8-oxoguanosine−cytidine lesion, if not recognized and removed, not only leads to G-to-T transversion mutations but renders the base pair being more vulnerable to the ionizing radiation and singlet oxygen (1O2) damage. Herein, reaction dynamics of a prototype Watson−Crick base pair [9MOG ⋅ 1MC]⋅+, consisting of 9-methyl-8-oxoguanine radical cation (9MOG⋅+) and 1-methylcystosine (1MC), was examined using mass spectrometry coupled with electrospray ionization. We first detected base-pair dissociation in collisions with the Xe gas, which provided insight into intra-base pair proton transfer of 9MOG⋅+ ⋅ 1MC [9MOG − HN1]⋅ ⋅ [1MC+HN3′]+ and subsequent non-statistical base-pair separation. We then measured the reaction of [9MOG ⋅ 1MC]⋅+ with 1O2, revealing the two most probable pathways, C5-O2 addition and HN7-abstraction at 9MOG. Reactions were entangled with the two forms of 9MOG radicals and base-pair structures as well as multi-configurations between open-shell radicals and 1O2 (that has a mixed singlet/triplet character). These were disentangled by utilizing approximately spin-projected density functional theory, coupled-cluster theory and multi-referential electronic structure modeling. The work delineated base-pair structural context effects and determined relative reactivity toward 1O2 as [9MOG − H]⋅>9MOG⋅+>[9MOG − HN1]⋅ ⋅ [1MC+HN3′]+≥9MOG⋅+ ⋅ 1MC.  相似文献   

20.
The iron(ii) salt [Fe(bpp)2](isonicNO)2·HisonicNO·5H2O (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; isonicNO = isonicotinate N-oxide anion) undergoes a partial spin crossover (SCO) with symmetry breaking at T1 = 167 K to a mixed-spin phase (50% high-spin (HS), 50% low-spin (LS)) that is metastable below T2 = 116 K. Annealing the compound at lower temperatures results in a 100% LS phase that differs from the initial HS phase in the formation of a hydrogen bond (HB) between two water molecules (O4W and O5W) of crystallisation. Neutron crystallography experiments have also evidenced a proton displacement inside a short strong hydrogen bond (SSHB) between two isonicNO anions. Both phenomena can also be detected in the mixed-spin phase. 1 undergoes a light-induced excited-state spin trapping (LIESST) of the 100% HS phase, with breaking of the O4W⋯O5W HB and the onset of proton static disorder in the SSHB, indicating the presence of a light-induced activation energy barrier for proton motion. This excited state shows a stepped relaxation at T1(LIESST) = 68 K and T2(LIESST) = 76 K. Photocrystallography measurements after the first relaxation step reveal a single Fe site with an intermediate geometry, resulting from the random distribution of the HS and LS sites throughout the lattice.

A proton migration across a short strong hydrogen bond can be triggered by spin crossover of a remote Fe2+ cation, with the onset of a photoinduced activation energy barrier for proton motion at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号