首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An innovative strategy is proposed to synthesize single‐crystal nanowires (NWs) of the Al3+ dicarboxylate MIL‐69(Al) MOF by using graphene oxide nanoscrolls as structure‐directing agents. MIL‐69(Al) NWs with an average diameter of 70±20 nm and lengths up to 2 μm were found to preferentially grow along the [001] crystallographic direction. Advanced characterization methods (electron diffraction, TEM, STEM‐HAADF, SEM, XPS) and molecular modeling revealed the mechanism of formation of MIL‐69(Al) NWs involving size‐confinement and templating effects. The formation of MIL‐69(Al) seeds and the self‐scroll of GO sheets followed by the anisotropic growth of MIL‐69(Al) crystals are mediated by specific GO sheets/MOF interactions. This study delivers an unprecedented approach to control the design of 1D MOF nanostructures and superstructures.  相似文献   

2.
Summary: Cationic gelators, capable of gelling alcohols, were developed as structure-directing agents for preparing metal oxides. The sol-gel polymerization of metal alkoxides using the gelators as templates afforded metal oxide nanotubes. The unique structure of metal oxides was created by transferring the shape of fibrous aggregates of gelator. The electrostatic interaction between cationic gelator and anionic metal oxide precursor plays an important role for acting as templates.  相似文献   

3.
Composites of a copper‐based metal‐organic framework (MOF) and graphite oxide (GO) were tested for hydrogen sulfide removal at ambient conditions. In order to understand the mechanisms of adsorption, the initial and exhausted samples were analyzed by various techniques including X‐ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analyses, and sorption of nitrogen. Compared to the parent materials, an enhancement in hydrogen sulfide adsorption was found. It was the result of physical adsorption of water and H2S in the pore space formed at the interface between the MOF units and the graphene layers where the dispersive forces are the strongest. Besides physisorption, reactive adsorption was found as the main mechanism of retention. H2S molecules bind to the copper centers of the MOF. They progressively react with the MOF units resulting in the formation of copper sulfide. This leads to the collapse of the MOF structure. Water enhances adsorption in the composites as it allows the dissolution of hydrogen sulfide.  相似文献   

4.
Graphene oxide (GO) is experiencing growing interest by synthetic organic chemists as a promoter of chemical transformations. The synergistic role of the multiple functionalities featuring the nanostructured carbon materials and their π-domains enables the interplay of specific activation modes towards organic compounds that can explore unprecedented chemical modifications. A detailed comprehension of the mechanistic details that govern the transformations guided by GO is a not fully solved task in the field. In this direction, more sophisticated and diversified techniques are employed, providing insights towards intriguing activation modes exerted by the π-matrix and the oxygenated/sulfonate groups decorating the functionalized nano-carbon material. The present Minireview accounts for a critical survey of the most recent developments in the area of GO-mediated organic transformations with a specific focus on mechanist aspects.  相似文献   

5.
6.
A defect‐free zeolitic imidazolate framework‐8 (ZIF‐8)/graphene oxide (GO) membrane with a thickness of 100 nm was prepared using two‐dimensional (2D) ZIF‐8/GO hybrid nanosheets as seeds. Hybrid nanosheets with a suitable amount of ZIF‐8 nanocrystals were essential for producing a uniform seeding layer that facilitates fast crystal intergrowth during membrane formation. Moreover, the seeding layer acts as a barrier between two different synthesis solutions, and self‐limits crystal growth and effectively eliminates defects during the contra‐diffusion process. The resulting ultrathin membranes show excellent molecular sieving gas separation properties, such as with a high CO2/N2 selectivity of 7.0. This 2D nano‐hybrid seeding strategy can be readily extended to the fabrication of other defect‐free and ultrathin MOF or zeolite molecular sieving membranes for a wide range of separation applications.  相似文献   

7.
A 3D Co-based metal–organic framework ( Co-MOF ) with two kinds of large pores filled by free Co2+ ions and ligands was synthesized and characterized. To expand the MOF structure and conductivity, the free Co2+ ions and ligands were exchanged by conductive ionic liquid EtpyBr and photosensitive AgNO3 through single crystal-to-single crystal transformation, which produced structure-changed 3D MOFs Co-MOF-Br and Co-Ag-MOF , which were characterized by single-crystal X-ray diffraction. Incorporating small quantities of doped polyaniline (PANI) with redox activity into the pores could further tune the stability and conductivity of the three MOFs. The PANI/MOFs all show outstanding electrical conductivity (≈10−2 S cm−1), and PANI/ Co-MOF-Br has the largest p-type Seebeck coefficient of 66.6 μV K−1. PANI/ Co-MOF-Br and PANI/ Co-Ag-MOF have 4 and 15 times higher photocurrent density compared with PANI/ Co-MOF , respectively. This work sheds light on the design of advanced electrically conductive 3D MOFs.  相似文献   

8.
组装高能量密度的非对称超级电容器需要使用比电容大、 体积变化小且循环稳定性好的电极材料. 过渡金属硫化物(TMSs)与纳米碳材料的复合物是此类电极材料之一. 采用水热法合成了由Cu-Mo硫化物在微波剥离的还原氧化石墨烯表面生长的复合材料(CuS-MoS2/MErGO). 此复合材料在电流密度为2 A/g时具有高达861.5 F/g的比电容和良好的循环稳定性. 将1.6 V的电池电压施加在由NiS/MErGO为正极, CuS-MoS2/MErGO为负极组装成的不对称超级电容器上时, 该电容器的功率密度为1.28 kW/kg, 且能量密度保持为54.2 W·h·kg-1. 结果表明, TMS复合材料是一种很有前途的高性能电化学储能材料, 尤其是用于非对称超级电容器的组装.  相似文献   

9.
Solvent‐dependent switching of graphene oxide (GO) as fluorescence quencher or enhancer was observed. In some solvents, GO increases the fluorescence yield of a hydrophilic molecule 7‐(diethylamino)‐coumarin‐3‐carboxylic acid (7‐DCA), and in some solvents GO act as a quencher of fluorescence.  相似文献   

10.
超级电容器用石墨烯/金属氧化物复合材料   总被引:2,自引:0,他引:2  
超级电容器是一种具有高功率密度和长循环寿命的新型储能装置,碳材料、金属氧化物和导电聚合物是常见的三种超级电容器电极材料。在石墨烯/金属氧化物复合材料中,石墨烯和金属氧化物可以发挥各自的优点,结合石墨烯优异的循环稳定性能和金属氧化物的高容量特性,纳米复合材料的综合性能可以得到很大地提升。因此,石墨烯/金属氧化物复合物的研究是超级电容器领域的热点研究方向之一。本文以金属氧化物的种类、石墨烯的结构和复合物的制备方法为线索,综述了国内外应用于超级电容器方面的石墨烯/金属氧化物复合材料的研究进展,归纳总结出与石墨烯复合最优的金属氧化物类型和制备方法,并进一步对该类复合材料的发展趋势进行了展望。  相似文献   

11.
Herein, we report a negative pressure pyrolysis to access dense single metal sites (Co, Fe, Ni etc.) with high accessibility dispersed on three-dimensional (3D) graphene frameworks (GFs), during which the differential pressure between inside and outside of metal–organic frameworks (MOFs) promotes the cleavage of the derived carbon layers and gradual expansion of mesopores. In situ transmission electron microscopy and Brunauer–Emmett–Teller tests reveal that the formed 3D GFs possess an enhanced mesoporosity and external surface area, which greatly favor the mass transport and utilization of metal sites. This contributes to an excellent oxygen reduction reaction (ORR) activity (half-wave potential of 0.901 V vs. RHE). Theoretical calculations verify that selective carbon cleavage near Co centers can efficiently lower the overall ORR theoretical overpotential in comparison with intact atomic configuration.  相似文献   

12.
还原态氧化石墨烯的制备及其对重金属离子的吸附性能   总被引:1,自引:1,他引:1  
王波张  帆黄   《应用化学》2014,31(4):502-504
通过乙二胺(EDA)对氧化石墨烯(GO)进行还原制备了还原态氧化石墨烯(RGO),利用红外光谱、拉曼光谱、热重分析和扫描电子显微镜等技术对制得的RGO进行了表征。 考察了RGO复合材料在静态吸附条件下对Pb(Ⅱ)、Cd(Ⅱ)、Cu(Ⅱ)和Mn(Ⅱ)金属离子的吸附性能。 结果表明,该吸附材料对上述4种重金属离子在25 ℃时的静态饱和吸附量分别为396.6、115.3、54.2和38.6 mg/g。 吸附于RGO上的Pb(Ⅱ)可用0.05 mol/L HCl溶液进行洗脱,再生后的RGO重复使用3次时吸附量能达到首次吸附量的85%。  相似文献   

13.
Graphene oxide (GO) nanosheets are readily reduced by aniline above room temperature in an aqueous acid medium, with the aniline simultaneously undergoing oxidative polymerization to produce the reduced graphene oxide‐polyaniline nanofiber (RGO‐PANi) composites. The resulting RGO‐PANi composites and RGO (after dissolution of PANi) were characterized by XPS, XRD analysis, TGA, UV–visible absorption spectroscopy, and TEM. It was also found that the RGO‐PANi composites exhibit good specific capacitance during galvanostatic charging–discharging when used as capacitor electrodes.

  相似文献   


14.
The concept of secondary building units (SBUs) is central to all science on metal-organic frameworks (MOFs), and they are widely used to design new MOF materials. However, the presence of SBUs during MOF formation remains controversial, and the formation mechanism of MOFs remains unclear, due to limited information about the evolution of prenucleation cluster structures. Here in situ pair distribution function (PDF) analysis was used to probe UiO-66 formation under solvothermal conditions. The expected SBU—a hexanuclear zirconium cluster—is present in the metal salt precursor solution. Addition of organic ligands results in a disordered structure with correlations up to 23 Å, resembling crystalline UiO-66. Heating leads to fast cluster aggregation, and further growth and ordering results in the crystalline product. Thus, SBUs are present already at room temperature and act as building blocks for MOF formation. The proposed formation steps provide insight for further development of MOF synthesis.  相似文献   

15.
通过将吡咯单体在低温下与氧化石墨烯进行原位聚合,获得聚吡咯/石墨烯(Ppy/CRGO)复合材料.采用场发射电子显微镜(FESEM)、红外(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.FESEM结果表明,通过控制氧化石墨烯(GO)和吡咯单体的质量比例,可以对复合物的层状和厚度进行调控.FT-IR和TGA结果表明,聚吡咯(Ppy)是通过化学键合的方式与氧化石墨烯复合在一起.通过机械冷压法将粉末状Ppy/CRGO复合物压成圆片电极,并探讨了石墨烯和聚吡咯复合比例、反应时间、烘干温度和孔隙率等因素对Ppy/CRGO复合物电极的电学和电化学性能的影响.结果表明,Ppy与CRGO质量比为10∶1所制得的Ppy/CRGO复合物的电容量为421 F·g-1,通过在电极中引入孔隙,电容量能进一步提升为509 F·g-1.  相似文献   

16.
Froth flotation was employed for quantitative separation of graphene oxide nanoribbon (GONR) from its solution. The effects of GONR concentration, pH, and cetyltrimethyl ammonium bromide (CTAB) concentration on GONR separation were studied through a Box–Behnken experimental design method. F value of 176.47, coefficient of determination of 0.9969, adjusted R2 of 0.9912, and coefficient of variation of 4.09%, explored by means of analysis of variance, implied the satisfactory adjustment of the obtained quadratic model. The results indicated that low GONR and high CTAB concentration at low pH were ideal for maximum separation by flotation.  相似文献   

17.
Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium‐ion batteries (SIBs) because of the existence of H‐bonding between the layers and ultralow electrical conductivity which impedes the Na+ and e? transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali‐metal‐ion (Li+, Na+, K+)‐functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na‐storage capabilities. Electrochemical tests demonstrated that sodium‐ion‐functionalized GO (GNa) has shown outstanding Na‐storage performance in terms of excellent rate capability and long‐term cycle life (110 mAh g?1 after 600 cycles at 1 A g?1) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na‐storage capabilities of functionalized GO. These calculations have indicated that the Na?O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na‐storage properties among all comparatives functionalized by other alkali metal ions.  相似文献   

18.
基于石墨烯优良的物化性能,利用层层组装法将氧化石墨烯修饰于石英毛细管内壁,制备了氧化石墨烯基质的毛细管电色谱,通过电渗流、拉曼光谱等对其进行表征。在此基础上,基于离子键合法将胰蛋白酶固定于毛细管电色谱柱头,制备胰蛋白酶微反应器。两者结合构成毛细管电色谱胰蛋白酶微反应器。实验结果显示,氧化石墨烯作为基质既可提高样品的分离效率,还能促进胰蛋白酶的催化性能。氧化石墨烯修饰的毛细管电色谱对N-苯甲酰-L-精氨酸乙酯盐酸盐(BAEE)和N-苯甲酰-L-精氨酸(BA)混合物的分离度从裸毛细管的3.70提升至4.71,而其固定化酶活性(米氏常数K_m=1.10 mmol/L,最大反应速率V_(max)=0.32 mmol·L~(-1)·s~(-1))也明显优于裸毛细管(K_m=109.77 mmol/L,V_(max)=0.000 46 mmol·L~(-1)·s~(-1))。利用所制备的微反应器从10种中药材中筛选胰蛋白酶抑制剂活性成分的药材,结果发现三七和大黄中均存在胰蛋白酶抑制剂活性成分。  相似文献   

19.
A simple and easy process has been developed to efficiently dope phosphorus into a graphene oxide surface. Phosphorus‐doped graphene oxide (PGO) is prepared by the treatment of polyphosphoric acid with phosphoric acid followed by addition of a graphene oxide solution while maintaining a pH of around 5 by addition of NaOH solution. The resulting materials are characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The as‐made PGO solution‐coated cloth exhibits excellent flame retardation properties. The PGO‐coated cloth emits some smoke at the beginning without catching fire for more than 120 s and maintains its initial shape with little shrinkage. In contrast, the pristine cloth catches fire within 5 s and is completely burned within 25 s, leaving trace amounts of black residue. The simple technique of direct introduction of phosphorus into the graphene oxide surface to produce phosphorus‐doped oxidized carbon nanoplatelets may be a general approach towards the low‐cost mass production of PGO for many practical applications, including flame retardation.  相似文献   

20.
Graphene oxide (GO) contains several chemical functional groups that are attached to the graphite basal plane and can be manipulated to tailor GO for specific applications. It is now revealed that the reaction of GO with ozone results in a high level of oxidation, which leads to significantly improved ionic (protonic) conductivity of the GO. Freestanding ozonated GO films were synthesized and used as efficient polymer electrolyte fuel cell membranes. The increase in protonic conductivity of the ozonated GO originates from enhanced proton hopping, which is due to the higher content of oxygenated functional groups in the basal planes and edges of ozonated GO as well as the morphology changes in GO that are caused by ozonation. The results of this study demonstrate that the modification of dispersed GO presents a powerful opportunity for optimizing a nanoscale material for proton‐exchange membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号