首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Among all the bio‐metals, zinc and copper derivatives of ONS donor thiosemicarbazone have aroused great interest because of their potential biological applications. Multisubstituted thiosemicarbazone ligand H2dspt (3,5‐dichlorosalicylaldehyde‐N4‐phenylthiosemicarbazone) derived new ternary complexes like [Zn(dspt)(phen)]?DMF ( 1 ) and [Cu(dspt)(phen)]?DMF ( 2 ), and another thiosemicarbazone, H2dsct (3,5‐dichlorosalicylaldehyde‐N4‐cyclohexylthiosemicarbazone), derived [Cu(dsct)(bipy)]?DMF ( 3 ). These complexes have been characterized by elemental analysis (CHNS), Fourier transform infrared (FT‐IR), ultraviolet–visible (UV–Vis) and proton nuclear magnetic resonance (1H‐NMR) spectra. The structures of the complexes were obtained by single‐crystal X‐ray diffraction analysis. Compounds 1 and 2 got crystallized in the monoclinic P21/c space group. The complexes showed interesting supramolecular interaction, which in turn stabilizes the complexes. The ground state electronic configurations of the complexes were studied using the B3LYP/LANL2DZ basis set, and ESP plots of complexes were investigated. The interaction of the complexes with calf thymus DNA (CT‐DNA) was studied using absorption and fluorescence spectroscopic methods. A UV study of the interaction of the complexes with calf thymus DNA (CT‐DNA) has shown that the complexes can effectively bind to CT‐DNA, and [Cu(dspt)(phen)]·DMF ( 2 ) exhibited the highest binding constant to CT‐DNA (Kb = 3.7 × 104). Fluorescence spectral studies also indicated that Complex 2 binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (Kq = 4.7 × 105). The DNA cleavage result showed that the complexes are capable of cleaving the DNA without the help of any external agent. Molecular docking studies were carried out to understand the binding of complexes with the molecular target DNA. Complex 2 exhibited the highest cytotoxicity against human breast cancer cell line MD‐MBA‐231 (IC50 = 23.93 μg/mL) as compared to Complex 1 (IC50 = 44.40 μg/mL) .  相似文献   

2.
Two copper(II) complexes, [Cu(L)2](ClO4)2] and [Cu(L)(bipy)](ClO4)2, were prepared and characterized by the spectroscopic and analytic methods, where L is N-butylbenzimidazole and bipy is 2,2′-bipyridine. Single crystals of [Cu(L)(bipy)](ClO4)2 suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a DMF solution of the complex and the complex was found to crystallize as [Cu(L)(bipy)](ClO4)2·DMF. The asymmetric unit contains one [Cu(L)(bipy)]2+, two uncoordinated perchlorates, and one DMF solvate. Coordination geometry around Cu(II) is distorted square pyramidal with τ value of 0.31. Thermal properties of the complexes were examined by thermogravimetric analysis, indicating that the complexes are thermally stable to 310?°C. The metal complexes were screened for their in vitro antibacterial and antifungal activities Bacillus subtilis and Bacillus cereus (as Gram(+) bacteria), Escherichia coli, Enterobacter aerogenes, and Klebsiella pneumoniae (as Gram(–) bacteria), and Saccharomyces cerevisiae, Candida utilis, and Candida albicans (as yeasts). The complexes show antibacterial and antifungal activities against bacteria and yeasts.  相似文献   

3.
Eight new platinum(II)/palladium(II) complexes with 4-toluenesulfonyl-L-amino acid dianion and diimine/diamine ligands, [Pd(en)(Tsile)]·H2O (1), [Pd(bipy)(Tsile)] (2), [Pd(bipy)(Tsthr)]·0.5H2O (3), [Pd(phen)(Tsile)]·0.5H2O (4), [Pd(phen)(Tsthr)]·H2O (5), [Pd(bqu)(Tsthr)]·1.5H2O (6), [Pt(en)(Tsser)] (7), and [Pt(en)(Tsphe)]·H2O (8), have been synthesized and characterized by elemental analyses, 1H NMR and mass spectrometry. The crystal structure of 7 has been determined by X-ray diffraction. Cytotoxicities were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. The complexes exert cytotoxicity against HL-60, Bel-7402, BGC-823, and KB cell lines with 4 having the best cytotoxicity against HL-60, Bel-7402, and BGC-823 cell lines; the compounds are less cytotoxic than cisplatin.  相似文献   

4.
Three novel copper(II) complexes, [Cu(Gly‐l ‐Val)(HPBM)(H2O)]·ClO4·H2O ( 1 ), [Cu(Gly‐l ‐Val)(TBZ)(H2O)]·ClO4 ( 2 ) and [Cu(Gly‐l ‐Val)(PBO)(H2O)]·ClO4 ( 3 ) (Gly‐l ‐Val = glycyl‐l ‐valine anion, HPBM = 5‐methyl‐2‐(2′‐pyridyl)benzimidazole, TBZ = 2‐(4′‐thiazolyl)benzimidazole, PBO = 2‐(2′‐pyridyl)benzoxazole), have been prepared and characterized with elemental analyses, conductivity measurements as well as various spectroscopic techniques. The interactions of these copper complexes with calf thymus DNA were explored using UV–visible, fluorescence, circular dichroism, thermal denaturation, viscosity and docking analyses methods. The experimental results showed that all three complexes could bind to DNA via an intercalative mode. Moreover, the cytotoxic effects were evaluated using the MTT method, and the antimicrobial activity of these complexes was tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results showed that the activities are consistent with their DNA binding abilities, following the order of 1 > 2 > 3 .  相似文献   

5.
A series of Cu(II) carboxylate complexes (carboxylate?=?2-fluorobenzoic acid (2-HFBA) or 4-fluorobenzoic acid (4-HFBA)) containing either one chelating 1,10-phenanthroline (phen) or 2,2′-bipyridine (bipy) have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, and thermal analyses. In [Cu(bipy)(H2O)(2-FBA)2] (1), [Cu(bipy)(H2O)(4-FBA)2] (3), and [Cu(phen)(H2O)(2-FBA)2] (4), Cu is five-coordinate in a square pyramidal geometry and four-coordinate in [Cu(phen)(2-FBA)2] (2). The four complexes are extended into 1-D chains through hydrogen-bonding and π?···?π interactions in 1 and 4, only hydrogen-bonding in 2, and π?···?π interactions in 3. These contacts lead to aggregation and supramolecular self-assembly.  相似文献   

6.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

7.
A series of Co(II), Ni(II), and Cu(II) complexes have been synthesized with Schiff bases (H2LI and H2LII) derived from 8-formyl-7-hydroxy-4-methylcoumarin or 5-formyl-6-hydroxycoumarin and o-aminophenol. Structures have been proposed from elemental analyses, spectral (IR, UV-Vis, FAB-mass, and Fluorescence), magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Elemental analyses indicate ML · 3H2O [M = Co(II), Ni(II), and Cu(II)] stoichiometry. Spectroscopic studies suggest coordination through azomethine nitrogen, phenolic oxygen of o-aminophenol, and the coumarin via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, and Cladosporium) activities by minimum inhibitory concentration (MIC) method. The redox behavior of the complexes was investigated using cyclic voltammetry (CV).  相似文献   

8.
Slow diffusion reaction of 2,2′‐dithiodibenzoic acid (dtdb) with CuCl2 in the presence of N‐donor ligands results in the formation of different coordination polymers where both S–S and C–S scission and oxidation of S is observed. X‐ray diffraction analysis of [Cu(tdb)(phen)(H2O)]2 · 2H2O.2DMF] ( 1 ), [Cu(tdb)(py)2(H2O)]2 ( 3 ), and [Cu(tdb)(bipy)(H2O)]2 · 0.5H2O ( 4 ) (tdb = thiodibenzoic acid, phen = phenanthroline, py = pyridine, bipy = 2,2′‐bipyridine) show that the metal ions are coordinated to the carboxylate oxygen atoms of the in situ generated tdb ligand in a monodenate fashion. In [Cu(phen)(SO4)2(H2O)2]n ( 2 ) and [Cu(bipy)(SO4)2(H2O)2]n ( 5 ), the sulfur is oxidized to sulfate ions prior to coordination with the metal. Complex 1 has a dimeric structure with π–π interactions between the phen ligands, whereas 3 and 4 form 1D polymeric chains.  相似文献   

9.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

10.
Reactions of copper salts, zoledronic acid, and 2,2′-bipyridine/1,10-phenanthroline in aqueous ethanolic solutions afforded four phosphonate oxygen-bridged copper complexes, Cu(bipy)(H4zdn)(HSO4) (1), [Cu2(bipy)2(H2zdn)(H2O)(Cl)]·4H2O (2), [Cu2(phen)2(H2zdn)(H2O)(Cl)]·2.5H2O (3), and [Cu3(bipy)3(H4zdn)(H2zdn)(SO4)]·5H2O (4) (H5zdn = zoledronic acid, bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline). The copper centers of 14 have square pyramidal coordination geometries. The Cu(II) ions are coordinated to bipy/phen, zoledronate, and HSO4?/Cl? forming mononuclear units for 1, dinuclear for 2 and 3, and trinuclear for 4. These building units are further extended into 3-D supramolecular networks via multiple hydrogen bond interactions. Temperature-dependent magnetic properties of 2 and 4 suggest weak antiferromagnetic coupling (J = ?4.53(8) cm?1 for 2, J = ?1.69(4) cm?1 for 4). The antitumor activity of 2 was evaluated against the human lung cancer cell line and indicates effective time- and dose-dependent cytotoxic effects.  相似文献   

11.
Two Ni(II) metal–organic frameworks, [Ni(INAIP)(DMF)]·0.5DMF and [Ni(INAIP)(H2O)]·2H2O, have been synthesized by the reaction of 5-(isonicotinamido)isophthalic acid (H2INAIP) with NiSO4·6H2O using different reaction solvents. Single-crystal X-ray diffraction analysis indicates that [Ni(INAIP)(DMF)]·0.5DMF has a twofold interpenetrated three-dimensional (3D) framework with sra topology, while [Ni(INAIP)(H2O)]·2H2O has a two-dimensional (2D) network structure with a 4-connected (43·63) topology. In addition, the magnetic and adsorption properties of the complexes were explored.  相似文献   

12.
Three new copper(II) complexes with isonicotinic acid N-oxide (HL) and 1,10-phenanthroline (phen) as ligands, [Cu(L)(phen)(H2O)]2(NO3)2···2H2O (1), [Cu(L)(phen)(H2O)]2(ClO4)2···2H2O (2), and [Cu(L)(phen)Br]2- [Cu(L)(phen)(H2O)]2Br2···6H2O (3) have been synthesized and structurally characterized. The structures of all three complexes feature a Cu2 dimer formed by two Cu(II) ions interconnected by two bridging ligands. Each copper(II) ion has a distorted square pyramidal coordination geometry with elongated axial coordination by an aqua ligand or halogen anion. The isonicotinic acid N-oxide anion is bidentate, being coordinated to two Cu(II) ions through its N-O oxygen and one of its carboxylate oxygen atoms. Magnetic susceptibility measurements show a Curie–Weiss paramagnetic behavior characteristic of one unpaired electron for a copper(II) ion for all three complexes.  相似文献   

13.
Two mixed-ligand complexes, [Cu(L)(2imi)] (1) and [Ni(L)(2imi)]·MeOH (2) [L = 2-(((5-chloro-2-oxyphenyl)imino)methyl)phenolato) and 2imi = 2-methyl imidazole], have been prepared by the reaction of appropriate metal salts with H2L and 2-methyl imidazole. Their structures were characterized by microanalysis, FT-IR, UV–vis, molar conductivity, and 1H NMR for [Ni(L)(2imi)]·MeOH. The structures were determined using single crystal X-ray diffraction. Each four-coordinate metal center, Cu(II) in 1 and Ni(II) in 2, is surrounded by donors of Schiff base (L2?) and N of 2-methyl imidazole in square planar geometries. α-Amylase activities of these compounds have also been investigated. The experimental data showed that α-amylase was inhibited by Ni(II) complex while the Cu(II) complex causes a 1.3-fold decrease in Km value. Antimicrobial results show that these compounds, especially the Cu(II) complex, have potential for antibacterial activity against Gram negative and Gram positive bacteria and antifungal activity against Aspergillus fumigatus.  相似文献   

14.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

15.
Three copper(II) coordination polymers, namely, {[CuL(H2O)2] · 4H2O}n( 1 ), [CuL(H2O)(DMF)]n( 2 ), and [CuL(2, 2′‐bipy)(DMSO)] · DMSO ( 3 ) [H2L = 2, 2′‐(4, 6‐dinitro‐1, 3‐phenyl‐enedioxy)diacetic acid] were synthesized in different solvents (H2O, DMF, and DMSO). X‐ray single crystal diffraction studies show that both complexes 1 and 3 belong to triclinic crystal system and P$\bar{1}$ space group and complex 2 belongs to the monoclinic crystal system and P21/c space group. In three complexes, all the central CuII ions coordinate with the ligand, forming a square pyramidal configuration. Both complexes 1 and 2 show similar 1D chain‐like structure and the chains are further connected by hydrogen bonds, forming 3D frameworks. Complex 3 exhibits a 0D structure due to the introduction of the ligand 2, 2′‐bipy. In addition, the luminescence properties of these complexes were investigated.  相似文献   

16.
Abstract

The coordination behavior of 5-methylpyrazole-3-carboxylic acid (Hmpca) has been demonstrated by the solid state isolation and characterization of [Cu(mpca)2(H2O)]·3H2O (1) [Cu(mpca)2]·H2O (2) and [Co(mpca)2(H2O)2] (3). The new compounds are characterized by X-ray crystallography, thermogravimetric analysis and DFT study. The redox properties of the complexes are examined by cyclic voltammetric analysis. The antibacterial and antifungal activities of the compounds against eight bacteria (Escherichia coli, Enterococcus faecalis, Bacillus subtilis, Klebsiella pneumoniae, Proteus vulgaris, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and two fungi (Aspergillus flavus and Candida albicans) are screened using modified agar well diffusion method. The metal complexes demonstrate better inhibition on all bacteria and fungi than the ligand. The high lipophilicity of the complexes accounts for good inhibitory action toward microbes. Among the reported complexes, 3 emerges as an excellent antifungal agent and a better antibiotic than standard fluconazole. The structure and activity relationship indicate that complexes having sufficient Jahn–Teller distortion with high logP values, cross the cell membrane of the microbes creating intercellular damage.  相似文献   

17.
Co(II), Ni(II), and Cu(II) complexes, ML2 · 2H2O have been synthesized with Schiff bases derived from m-substituted thiosemicarbazides and 2-methoxy benzaldehyde. The complexes are soluble in DMF/DMSO and non-electrolytes. From analytical, spectral (IR, UV-Vis, ESR, and FAB-mass), magnetic and thermal studies octahedral geometry is proposed for the complexes. The redox behavior of the complexes was investigated using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by Minimum Inhibitory Concentration method. DNA cleavage is studied by agarose gel electrophoresis method.  相似文献   

18.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

19.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

20.
Two palladium(II) complexes, [Pd(bipy)(BzPhe‐N,O)] and [Pd(phen)(BzPhe‐N,O)]·4H2O were synthesized by reactions between Pd(bipy)Cl2 and BzPheH2 (N‐benzoyl‐β‐phenylalanine), Pd(phen) Cl2 and BzPheH2 in water at pH‐9, with their structures determined by X‐ray diffraction analysis. The Pd atom is coordinated by two nitrogen atoms of bipy (or phen), the deprotonated amido type nitrogen atom and one of the carboxylic oxygens of BzPhe (BzPhe = N‐benzoyl‐β‐phenylalaninate dianion). In the complex [Pd(phen) (BzFne‐N,O)] · 4H2O, the side chain of phenylalanine is located above and approximately parallels to the coordination plane. Both the aromatic‐aromatic stacking interaction between the phenyl ring of phenylalanine and phen, and the metal ion‐aromatic interaction between the phenyl ring of phenylalanine and Pd(II) were observed. [Pd(bipy)(BzPhe‐N,O)] has the phenylalanyl side chain oriented outwards from the coordination plane, which is mainly due to the interaction between the carbonyl oxygen atom of the amido group and the phenyl ring of phenylalanine. The reason for the different orientation of phenylalanyl side chain in the complexes was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号