首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High efficiency of thermoelectric conversion can be achieved by using materials with a high Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Mass-difference-scattering of the phonons is one of the most effective way for reducing the thermal conductivity in bulk thermoelectric materials. Investigations of transport phenomena in (TlBiS2)1-x (2PbS)x alloys system have shown that in solid solutions of the (A3B5C 2 6 )1-x (2A4B6)x type at cation substitution according to scheme 2A4(+2) A 3(+1) + B5(+3) occurs a strong decrease of the lattice thermal conductivity. In the vicinity of x = 0. 50 the lattice part of thermal conductivity of (TlBiS2)1-x (2PbS)x alloys decreases down to 0. 26 W/mK, i. e., it approaches the theoretical minimum. As a result, the thermoelectric figure of merit for these alloys ( 25%) exceeds the respective value for lead sulfide at room temperature.  相似文献   

2.
Highly (00l)-oriented pure Bi2Te3 films with in-plane layered grown columnar nanostructure have been fabricated by a simple magnetron co-sputtering method. Compared with ordinary Bi2Te3 film and bulk materials, the electrical conductivity and Seebeck coefficient of such films have been greatly increased simultaneously due to raised carrier mobility and electron scattering parameter, while the thermal conductivity has been decreased due to phonon scattering by grain boundaries between columnar grains and interfaces between each layers. The power factor has reached as large as 33.7 μW cm−1 K−2, and the out-of-plane thermal conductivity is reduced to 0.86 W m−1 K−1. Our results confirm that tailoring nanoscale structures inside thermoelectric films effectively enhances their performances.  相似文献   

3.
《Current Applied Physics》2018,18(12):1534-1539
SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity 0.23 W m−1 K−1. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped KxSn1−xSe (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the K0.001Sn0.999Se sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.  相似文献   

4.
The thermoelectric properties of Mo-substituted CrSi2 were studied. Dense polycrystalline samples of Mo-substituted hexagonal C40 phase Cr1−xMoxSi2 (x=0–0.30) were fabricated by arc melting followed by spark plasma sintering. Mo substitution substantially increases the carrier concentration. The lattice thermal conductivity of CrSi2 at room temperature was reduced from 9.0 to 4.5 W m−1 K−1 by Mo substitution due to enhanced phonon–impurity scattering. The thermoelectric figure of merit, ZT, increases with increasing Mo content because of the reduced lattice thermal conductivity. The maximum ZT value obtained in the present study was 0.23 at 800 K, which was observed for the sample with x=0.30. This value is significantly greater than that of undoped CrSi2 (ZT=0.13).  相似文献   

5.
Herein, the synthesis of high-entropy wolframite oxide (CoCuNiFeZn)1-xGaxWO4 through standard solid-state route followed by spark plasma sintering and their structural, microstructural, and thermoelectric (TE) properties are investigated. X-ray diffraction pattern followed by patterns matching refinement shows a monoclinic structure with the volume of the unit cell decreasing with increasing Ga content. The optical bandgap for these oxides shows a cocktail effect in high-entropy configuration. The Seebeck coefficient indicates electrons as dominating charge carriers with a nondegenerate behavior. The electrical resistivity decreases with increasing temperature depicting a semiconducting nature. Thermal conductivity in high-entropy samples (κ ≈ 2.1 W m−1 K−1 @ 300 K) is significantly lower as compared to MgWO4 (κ ≈ 11.5 W m−1 K−1 @ 300 K), which can be explained by the strong phonon scattering due to large lattice disorder in high-entropy configuration. The TE figure of merit zT increases with Ga doping via modifying all three TE parameters positively.  相似文献   

6.
The thermoelectric properties of Bi intercalated compounds BixTiS2 have been investigated at the temperatures from 5 to 310 K. The results indicate that Bi intercalation into TiS2 leads to substantial decrease of its electrical resistivity (one order low for x=0.05 and two orders low for x=0.15, 0.25 at 300 K) and lattice thermal conductivity (22, 115 and 158% low at 300 K for x=0.05, 0.15 and 0.25, respectively). Specially, the figure of merit, ZT, of lightly intercalated compound Bi0.05TiS2 has been improved at all temperatures investigated, and specifically reaches 0.03 at 300 K, which is about twice as large as that of TiS2.  相似文献   

7.
Borophene, an atomically thin, corrugated, crystalline two-dimensional boron sheet, has been recently synthesized. Here we investigate mechanical properties and lattice thermal conductivity of borophene using reactive molecular dynamics simulations. We performed uniaxial tensile strain simulations at room temperature along in-plane directions, and found 2D elastic moduli of 188 N m−1 and 403 N m−1 along zigzag and armchair directions, respectively. This anisotropy is attributed to the buckling of the borophene structure along the zigzag direction. We also performed non-equilibrium molecular dynamics to calculate the lattice thermal conductivity. Considering its size-dependence, we predict room-temperature lattice thermal conductivities of 75.9 ± 5.0 W m−1 K−1 and 147 ± 7.3 W m−1 K−1, respectively, and estimate effective phonon mean free paths of 16.7 ± 1.7 nm and 21.4 ± 1.0 nm for the zigzag and armchair directions. In this case, the anisotropy is attributed to differences in the density of states of low-frequency phonons, with lower group velocities and possibly shorten phonon lifetimes along the zigzag direction. We also observe that when borophene is strained along the armchair direction there is a significant increase in thermal conductivity along that direction. Meanwhile, when the sample is strained along the zigzag direction there is a much smaller increase in thermal conductivity along that direction. For a strain of 8% along the armchair direction the thermal conductivity increases by a factor of 3.5 (250%), whereas for the same amount of strain along the zigzag direction the increase is only by a factor of 1.2 (20%). Our predictions are in agreement with recent first principles results, at a fraction of the computational cost. The simulations shall serve as a guide for experiments concerning mechanical and thermal properties of borophene and related 2D materials.  相似文献   

8.
Ge2Sb2Te5 is a famous phase-change memory material for rewriteable optical storage, which is widely applied in the information storage field. The stable trigonal phase of Ge2Sb2Te5 shows potential as a thermoelectric material as well, due to its tunable electrical transport properties and low lattice thermal conductivity. In this work, the carrier concentration and effective mass of Ge2Sb2Te5 are modulated by substituting Te with Se. Meanwhile, the thermal conductivity reduces from 2.48 W m−1 K−1 for Ge2Sb2Te5 to 1.37 W m−1 K−1 for Ge2Sb2Te3.5Se1.5 at 703 K. Therefore, the thermoelectric figure of merit zT increases from 0.24 for Ge2Sb2Te5 to 0.41 for Ge2Sb2Te3.5Se1.5 at 703 K. This study reveals that Se alloying is an effective way to enhance the thermoelectric properties of Ge2Sb2Te5.  相似文献   

9.
宋庆功  姜恩永 《物理学报》2008,57(3):1823-1828
根据Ag+离子-空位的二维有序结构建立了三维晶胞模型.采用局域密度近似下的平面波赝势方法,对有序AgxTiS2(x=0,1/4,1/3,1/2,2/3,3/4,1)系列进行了几何结构优化和总能量计算,并与LixTiS2系列进行了对比研究.有序AgxTiS2系统的晶格参量增量Δa关键词: xTiS2')" href="#">AgxTiS2 有序—无序相变 离子扩散 第一性原理计算  相似文献   

10.
A modified random‐element isodisplacement model has been developed and used to calculate the concentration dependence of the wavenumbers of Raman‐active modes in mixed crystal system, TiS2−xSex(0≤x≤2). Earlier theoretical work, based on the Jaswal model, predicted a phase transition in this system on cooling up to 125 K temperature for the composition x ≥ 1.2. But recently reported resistivity measurements did not find the existence of any phase transition for a composition x < 1.4 on cooling. Our calculations show these findings and give remarkably better fitting to Raman data. The estimated values of the force constants are found to lie generally in the range 105–106 amu cm−2. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Alkaline-earth (AE) and rare-earth (RE) atoms are usually used as void fillers in the caged compound CoSb3 to improve the thermoelectric performance of the filled system. Polycrystalline single-filled Sr0.21Co4Sb12, double-filled Sr x Yb y Co4Sb12, and Sr x Ba y Co4Sb12 skutterudites have been synthesized. Rietveld structure refinement confirms that both Sr and Yb occupy the Sb-icosaedron voids in skutterudite frame work. In this paper, we report the high-temperature thermoelectric properties including electrical conductivity, Seebeck coefficient, and thermal conductivity. Double filling of the Sr–Yb combinations shows a stronger suppression on lattice thermal conductivity than that of Sr–Ba combination. Furthermore, the double-filled Sr x Yb y Co4Sb12 skutterudites exhibit a much higher power factor than the Sr-filled system. The maximum power factor for Sr0.22Yb0.03Co4Sb12.12 reaches 41 μW cm−1 K−2 at room temperature and 57.5 μW cm−1 K−2 at 850 K, respectively. The enhanced thermoelectric figures of merit are 1.32 for Sr x Yb y Co4Sb12 and 1.22 for Sr x Ba y Co4Sb12 at 850 K, respectively.  相似文献   

12.
结合机械合金化与放电等离子烧结工艺制备了Ni和Se共掺的细晶方钴矿化合物Co1-xNixSb3-ySey,研究了晶界和点缺陷的耦合散射效应对CoSb3热电输运特性的影响.通过Ni掺杂优化载流子浓度提高功率因子.在x=0.1时,功率因子达到最大值1750μWm-1K-2(450℃),是没有掺Ni试样的两倍.晶界和点缺陷的耦合散射机理使晶格热导率急剧下降,其中Co0.9Ni0.1Sb2.85Se0.15的室温晶格热导率降低至1.67Wm-1K-1,接近目前单填充效应所能达到的最低值1.6Wm-1K-1,其热电优值ZT在450℃时达到最大值0.53.将Callaway-Von Baeyer点缺陷散射模型嵌入到Nan-Birringer有效介质理论模型,对晶界散射和点缺陷散射的耦合效应对热导率的影响进行了定量分析,模型计算与实验结果符合.理论模型计算表明,当晶粒尺寸下降到50nm同时掺杂引入点缺陷散射后,Co0.9Ni0.1Sb2.85Se0.15的晶格热导率下降到0.8Wm-1K-1. 关键词: 3')" href="#">CoSb3 Ni和Se掺杂 热电性能 耦合散射效应  相似文献   

13.
To achieve high-performance n-type PbTe-based thermoelectric materials, this work provides a synergetic strategy to improve electrical transport property with indium (In) element doping and reduces thermal conductivity with sulfur (S) element alloying. In n-type PbTe, In doping can tune the carrier density in the whole working temperature range, causing the carrier density to increase from 2.18 × 1019 cm−3 at 300 K to 4.84 × 1019 cm−3 at 823 K in Pb0.98In0.005Sb0.015Te. The optimized carrier density can further modulate electrical conductivity and Seebeck coefficient, finally contributing to a substantial increase of power factor, and a maximum power factor increase from 19.7 µW cm−1 K−2 in Pb0.985Sb0.015Te to 28.2 µW cm−1 K−2 in Pb0.9775In0.0075Sb0.015Te. Based on the optimally In-doped PbTe, S alloying is introduced to suppress phonon propagation by forming a complete solid solution, which could effectively reduce lattice thermal conductivity and simultaneously benefit carrier mobility to maintain high power factor. With S alloying, the minimum lattice thermal conductivity decreases from 0.76 Wm−1 K−1 in Pb0.985Sb0.015Te to 0.42 Wm−1 K−1 in Pb0.98In0.005Sb0.015Te0.88S0.12. Combining the advantages of both In doping and S alloying, the peak ZT value and averaged ZT (ZTave) (300–873 K) are boosted from 1.0 and 0.60 in Pb0.985Sb0.015Te to 1.4 and 0.87 in Pb0.98In0.005Sb0.015Te0.94S0.06.  相似文献   

14.
S.A. Saleh 《哲学杂志》2013,93(28):3183-3194
Thermoelectric properties of Pb1–x Sn x Te (0.00 ≥ x ≥ 0.08) alloys synthesized by melting-quenching-annealing method have been investigated. The sample structure and phases have been investigated by Raman spectroscopy and X-ray diffraction, while the morphology and stoichiometry have been studied by SEM and EDX. The nanomaterial exists in a single phase and has a face-centred cubic (fcc) lattice of rock-salt type in the whole range of x values in Pb1–x Sn x Te alloys. The effect of tin substitution on the lattice vibration and chemical bonding nature in the lead telluride has been investigated by Raman spectroscopy at room temperature. The Seebeck coefficient and electrical resistivity have been measured in the temperature range of 100–400 K. The electrical resistivity measurements reveal that the compounds have extrinsic to intrinsic conduction transition and the electrical temperature transition shifts to higher values with increasing the Sn content. For all studied compounds, the Seebeck coefficient is positive indicating predomination of positive charge carriers over the entire temperature range. The thermoelectric power factor was enhanced to 2.03 mWm?1 K?2 for the sample with 4% Sn content at room temperature.  相似文献   

15.
The crystal chemistry of the Kx(Znx/2Ge1-x2)O2 and Kx(GaxGe1-x)O2 systems has been investigated. In each of them a solid solution with a cristobalite-type structure has been obtained with a 0.90?×?1 range. The K+ conductivity increases strongly with vacancy content, while the activation energy remains nearly constant.Influence of various crystal chemical parameters on the conductivity (lattice covalency, size of the bottlenecks, etc...) is discussed.  相似文献   

16.
The pursuit for a high-performance thermoelectric n-type bismuth telluride-based material is significant because n-type materials are inferior to their corresponding p-type materials in highly efficient thermoelectric modules. Herein, to improve the thermoelectric performance of an n-type Bi2Te3, we prepared Bi2Te3 nano-plates with a homogeneous sub-micron size distribution and thickness range of about a few tens of nanometers. This was achieved using a typical nano-chemical synthetic method, and the prepared materials were then spark plasma sintered to fabricate n-type nano-bulk Bi2Te3 samples. We observed a significant enhancement of the anisotropic electrical transport properties for the nano-bulk sample with a higher power factor along the in-plane direction (24.3?μW?cm?1?K?2 at 300?K) than that along the out-of-plane direction (8.1?μW?cm?1?K?2 at 300?K). However, thermal transport properties were insensitive along the measured direction for the nano-bulk sample. We used a dimensionless figure of merit ZT to calculate the thermoelectric performance. The results showed that the maximum ZT value of 0.69 was achieved along the in-plane direction at 440?K for the nano-bulk n-type Bi2Te3 sample, which was however smaller than that of the previously reported n-type samples (ZT of 1.1). We believe that a further enhancement of the ZT value in the fabricated nano-bulk sample could be accomplished by effectively removing the surface organic ligand of the Bi2Te3 nano-plate particles and optimizing the spark plasma sintering conditions, maintaining the nano-plate morphology intact.  相似文献   

17.
苏贤礼  唐新峰  李涵  邓书康 《物理学报》2008,57(10):6488-6493
用熔融退火结合放电等离子烧结(SPS)技术制备了具有不同Ga填充含量的GaxCo4Sb12方钴矿化合物,研究了不同Ga含量对其热电传输特性的影响规律. Rietveld结构解析表明,Ga占据晶体学2a空洞位置,Ga填充上限约为0.22,当Ga的名义组成x≤0.25时,样品的电导率、室温载流子浓度Np随Ga含量的增加而增加,Seebeck系数随Ga含量的增加而减小. 室温下霍尔测试表明,每一个Ga授予框架0.9个电子,比Ga的氧化价态Ga3+小得多. 由于Ga离子半径相对较小,致使Ga填充方钴矿化合物的热导率κ及晶格热导率κL较其他元素填充的方钴矿化合物低. 当x=0.22时对应的样品在300K时的热导率和晶格热导率分别为3.05Wm-1·K-1和 2.86Wm-1·K-1.在600K下Ga0.22Co4.0Sb12.0样品晶格热导率达到最小,为1.83Wm-1·K-1,最大热电优值Z,在560K处达1.31×10-3K-1. 关键词: skutterudite化合物 Ga原子填充 结构 热电性能  相似文献   

18.
根据局域密度近似下的密度泛函理论,用第一性原理方法对TiS2,LiTiS2和LixTiS2(x=1/4, 1/3, 1/2, 2/3, 3/4)有序系统进行了几何优化和总能量计算.将计算结果与已有的实验和理论结果进行了对比,得到的归一化结构参量增量Δa0和Δc0随离子浓度单调地增加,与实验结果符合较好.Li关键词: xTiS2')" href="#">LixTiS2 有序结构 第一性原理计算 密度泛函理论  相似文献   

19.
The structural correlations including the lattice constants and the mosaic dispersions between CeO2 and yttria-stabilized ZrO2 (YSZ) in CeO2/YSZ/Si(001) heteroepitaxial films have been investigated by out-of-plane and in-plane X-ray-diffraction techniques. The distinct linear correlations of the full width at half-maximum (FWHM) of the ω scan between CeO2 and YSZ have been found in both directions. CeO2 always has a 0.7° lower FWHM of the ω scan than YSZ in the out-of-plane direction, but has a 2.6° higher FWHM in the in-plane direction. A possible relationship between the out-of-plane and in-plane FWHMs of the ω scans has been demonstrated with a lattice-rotation model. Besides, the lattice constants of CeO2 are dependent on the FWHMs of the YSZ ω scans: as the FWHM is below 3.5°, CeO2 has a tetragonal distortion, and as the FWHM is higher than 3.5°, CeO2 exhibits a cubic structure without distortion. The results are of great interest, both for the fundamental understanding of the film-growth mechanisms and for potential applications. Received: 11 September 2000 / Accepted: 5 June 2001 / Published online: 30 August 2001  相似文献   

20.
Electrical conductivity and Seebeck coefficient for the Bi2−xYxRu2O7 pyrochlores with x=0.0,0.5,1.0,1.5,2.0 were measured in the temperature range of 473-1073 K in air. With increasing Bi content, the temperature dependence of the electrical conductivity changed from semiconducting to metallic. The signs of the Seebeck coefficient were positive in the measured temperature range for all the samples, indicating that the major carriers were holes. The temperature dependence of the Seebeck coefficient for the Y2Ru2O7 indicated the thermal activation-type behavior of the holes, while that for the Bi2−xYxRu2O7 with x=0.0-1.5 indicated the itinerant behavior of the holes. The change in the conduction behavior from semiconductor to metal with increasing Bi content is consistent with the increase in the overlap between the Ru4d t2g and O2p orbitals, but the mixing of Bi6s, 6p states at EF may not be ruled out. The thermoelectric power factors for the Bi2−xYxRu2O7 with x=1.5 and 2.0 were lower than 10−5 W m−1 K−2 and those with x=0.0,0.5,1.0 were around 1-3×10−5 W m−1 K−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号